CR 114912

Final Report

THE DEVELOPMENT OF A NONCRYOGENIC NITROGEN/OXYGEN SUPPLY TECHNIQUE

OFFICE OF PRIME RESPONSIBILITY

E 03

by B. M. GREENOUGH

Prepared Under Contract NAS 9-10405

BIOTECHNOLOGY

LOCKHEED MISSILES & SPACE COMPANY

Sunnyvale, California

for

NATIONAL AERONAUTICS & SPACE ADMINISTRATION Manned Spacecraft Center

(NASA NONCR TECHN (Lock) (NASA CR OR I **FACILIT**

Unclas 10741

THE DEVELOPMENT OF A NONCRYOGENIC NITROGEN/OXYGEN SUPPLY TECHNIQUE

Prepared Under Contract NAS9-10405

by

THE REPORT OF THE PROPERTY OF

Biotechnology Organization

Lockheed Missiles & Space Company

Sunnyvale, California

B. M. Greenough

February 1971

National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas

Frontispiece – Space Station O_2/N_2 Generation System

LIST OF CONTRIBUTORS

Name

B. M. Greenough

R. C. Tuttle

K. Barany

O. T. Leong

R. Lamparter

Area of Contribution

Project Leader

Electrode Development

Computer Analyses

System Test

System Test

NASA TECHNICAL MONITOR

R. Gillen

CREW SYSTEMS DIVISION

NASA, Manned Spacecraft Center

CONTENTS

公司を持ち、本のことの書をあるとして、

Section				Page
	LIST	OF CO	NTRIBUTORS	i ii
	ILLU	USTRATI	ONS	vi i
	TAB	LES		ix
	ABS	TRACT		xi
	SUM	MARY		xii i
1	INT	RODUCT	ION	1-1
2	RES	ULTS AN	ND TECHNICAL DISCUSSION	2-1
	2.1	Electro	ode Development	2-1
		2.1.1	Electrode Design Requirements	2-1
		2.1.2	Test Facilities	2-2
		2.1.3	Cell Tests - Operating Parameters	2-6
		2.1.4	Experimental Results and Discussion	2-11
	2.2	One-Ma	an Model System Description	2-28
		2.2.1	Oxygen/Nitrogen Generation System	2-28
		2.2.2	Cabin and Metabolic/Leak Simulator	2-41
		2.2.3	Instrumentation	2-43
	2.3	System	Testing	2-56
		2.3.1	Operating Procedure	2-56
		2.3.2	System Test Summary	2-57
		2.3.3	Test Results and Discussion	2-59
	2.4	Compu	ter Analyses	2-91
		2.4.1	Model Revision	2-91
		2.4.2	Chaining	2-97
		2.4.3	Space Station Orbital Simulation	2-98

Section			Page
	2.5	Preliminary System Design	2-105
		2.5.1 PD System Description	2-105
		2.5.2 Summary System Specification	2-106
3	CON	CLUSIONS	3-1
	3.1	Electrode Development	3-1
	3.2	One-Man Model O./N ₂ System	3-1
	3.3	.· 2	3-1
	3.4	Preliminary System Design	3-2
4	REF	ERENCES	4-1
5	LIBE	RARY CARD ABSTRACT	5-1
Appendix	es		
A	ONE	-MAN MODEL SYSTEM CIRCUIT DIAGRAMS	A-1
В		RATION INSTRUCTIONS FOR ONE-MAN MODEL No. SYSTEM	B-1
C	BRE	ADBOARD SYSTEM TEST DATA LOGS	C-1

ILLUSTRATIONS

Figure		Page
	Frontispiece - Space Station O ₂ /N ₂ Generation System	ii
2-1	Immersed Electrode Polarization Apparatus	2-3
2-2	Electrolysis Cell Test Stations	2-5
2-3	Electrolysis Test Station Control Panels	2-7
2-4	Electrolysis Cell Polarization	2-10
2-5	Electrolyte Resistance vs. Concentration	2-12
2-6	Polarization of Experimental Nickel Electrodes	2-16
2-7	Polarization of T-53 and T-54 Electrodes	2-18
2-8	Micrograph of T-127	2-19
2-9	Micrograph of Commercial Electrode	2-19
2-10	Voltage vs. Time Curves for T-71, T-72, T-119, and a Commercial Electrode Assembly	2-22
2-11	Voltage vs. Time Curves for T-122 Through T-126	2-23
2-12	T-124 Performance in O ₂ /N ₂ System	2-25
2-13	T-125 Performance in O ₂ /N ₂ System	2-26
2-14	T-126 Performance in O ₂ /N ₂ System	2-27
2-15	One-Man Model O ₂ /N ₂ System Schematic	2-29
2-16	O ₂ /N ₂ Generation System	2-31
2-17	Cell Configuration	2-33
2-18	Electrolysis Cell Cutaway View	2-35
2-19	Electrolysis Cell Reverse Side View	2-35
2-20	Differential Pressure Controller Assembly	2-38
2-21	Bubble Separator Configuration	2-39
2-22	Closed Reservoir Configuration	2-40
2-23	Cabin Simulator	2-42
2-24	O ₂ /N ₂ System Control Block Diagram	2-44

. we		Page
	Water Feed Cortrol Mechanism	2-46
26	O ₂ /N ₂ System Control Panel	2-49
2-27	Power Conditioning Technique	2-51
2-28	O ₂ /N ₂ System Side View	2-53
2-29	Test Instrumentation	2-55
2-30	System Test Sequence	2-58
2-31	Test 2 - Cabin Atmosphere Control	2-60
2-32	Test 3 - Cabin Atmosphere Control	2-61
2-33	Test 4 - Cabin Atmosphere Control	2-62
2-34	Test 1 - Partial Plot of Performance	2-64
2-35	Test 2 - Performance Data	2-66
2-36	Test 3 - Performance Data	2-70
2-37	Test 4 - Performance Data	2-72
2-38	Sample Control Data From Test 3	2-78
2-39	Reaction Rate Constant vs. Current Density	2-85
2-40	Initial Run of Revised Computer Routine	2-93
2-41	Effect of Increased Hydrazine Feed Rate	2-95
2-42	Test 3 Simulation	2-99
2-43	Test 4 Simulation	2-101
2-44	Space Station Orbital Simulation	2-103
A-1	Control Logic Card 1	A-3
A-2	Control Logic Card 2	A-5
A-3	Current Regulator	A-7
A - 4	Voltage/Current Monitor	Δ_Q

TABLES

Table		Page
2-1	Experimental Electrode Test Summary	2-13
2-2	System Control and Monitoring Instrumentation	2-54
2-3	Test 1 - Time/Event Log	2-63
2-4	Test 2 - Time/Event Log	2-67
2-5	Test 3 - Time/Event Log	2-71
2-6	Test 4 - Time/Event Log	2-73
2-7	Hydrazine Conversion Efficiency - Method 1	2-80
2-8	Hydrazine Conversion Efficiency - Method 2	2-81
2-9	Hydrazine Conversion Efficiency - Method 3	2-82
2-10	Hydrazine Conversion - Test 1	2-83
2-11	Hydrazine Conversion – Test 2	2-84
2-12	Experimental Constants Determination	2-88
2-13	Computer Model Revisions	2-92
2-14	Computer Run 2-45 - Case Inputs	2-98
2-15	Summary System Performance Specification	2-107

ABSTRACT

A development program was conducted in two phases to define the characteristics and requirements of an electrochemical oxygen/nitrogen supply technique for space station application. In Phase I, electrode formulations and structures suitable for use as anodes in an oxygen/nitrogen generator were experimentally investigated. A one-man model oxygen/nitrogen generator integrated with a space cabin atmosphere simulator was fabricated and successfully tested in Phase II. Data from these tests were used to update a computer routine model of the cabin atmosphere control using the oxygen/nitro, en generator technique. A specification and preliminary design for a 12-man oxygen/nitrogen generation system was prepared.

SUMMARY

A development ogram was conducted concerned with the use of a hydrazine/water electrolysis technique to provide both the metabolic oxygen for crew needs and the oxygen and nitrogen for cabin leakage makeup. A laboratory breadboard model oneman O_2/N_2 generation system was integrated with a cabin and metabolic/leakage simulator to provide a testbed for determining cabin atmosphere control characteristics and for evaluating components.

Experimental electrodes were developed and were successfully operated in the one-man model system.

A zero-gravity closed reservoir system including a bubble separator was evaluated.

Control of the total pressure and oxygen partial pressure in the cabin simulator was demonstrated in a series of runs of the integrated system.

A computer routine model of the $\rm O_2/N_2$ system was updated and revised based on the experimental data from the integrated system testing. This updated computer model predicts adequate control of a 12-man space station under orbital conditions.

A preliminary design and specification for a full-scale 12-man O_2/N_2 system suitable for space station use yielded a total system weight of 862 lb, including spares, and power consumption of 7,830 watts with redundancy and sparing to a reliability of 0.9980 for a 180-day mission.

PRECEDING PAGE BLANK NOT FILMED

xiii

不是以本人的人名英爱克森 百五人

Section 1 INTRODUCTION

For extended space-base and space-station mamed missions, an oxygen/nitrogen cabin atmosphere will be utilized. The inert diluent will reduce the fire hazard of the oxygen and will enhance the physiological habitability of the environment.

Oxygen consumed metabolically by the crew is recovered from metabolic wastes in a water/waste management and regenerative life support system and is recycled to the cabin. Water electrolysis is a process considered for use in this cycle to recover oxygen from water and provide hydrogen for carbon dioxide reduction.

Losses in cabin atmosphere due to cabin leakage necessitate storage of oxygen and nitrogen for leakage makeup on long-duration missions. For a mission of less than 30 days, it may be practical to carry nitrogen and oxygen onboard the spacecraft using either cryogenic or high-pressure gaseous storage. For an extended mission, however, the weight penalty associated with cryogenic or high-pressure gaseous tankage is excessive.

The development program described herein is concerned with the use of a hydrazine/water electrolysis technique to provide both the metabolic oxygen for crew needs and the oxygen and nitrogen for cabin leakage makeup. With this system, oxygen and nitrogen are stored chemically as water and hydrazine in low-pressure (and therefore low-weight) tankage. This system also has the feature of providing automatic control of the space cabin total pressure and oxygen partial pressure.

The primary objectives of the program were to acquire test data on a laboratory model of the exygen/nitrogen system and to provide a preliminary design for a 12-man prototype system. The remaining involved two major areas of effort consisting of (1) electrode and cell development and (2) the accomble and test of a one-man model system to

provide data for the preliminary design. A computer routine model of the oxygen/ nitrogen system control of a space cabin atmosphere, developed previously under Contract NAS1-7706, was updated on the basis of the model system test data.

The specific tasks that were completed in meeting the program objectives were as follows:

- Electrode active material development
- Electrode structure and fabrication techniques
- Component selection
- Computer analyses
- Breadboard system assembly
- Breadboard system test
- Preliminary design of prototype system

These tasks were accomplished by analytical and experimental investigations in the following areas:

- Experimental electrodes were fabricated using various formulations, structures, and processing techniques. Performance was evaluated using a potentiostatic apparatus and an electrolysis cell test facility.
- Performance of system components was evaluated experimentally in a one-man model system. Performance characteristics were established for an oxygen partial pressure and total pressure control system, a cabin and metabolic/leak simulator, a zero-gravity water feed system, a zero-gravity bubble separator, and a hydrazine flow control system.
- Automatic control of a cabin simulator total pressure and oxygen partial pressure was demonstrated with the model oxygen/nitrogen generation system in a series of tests.
- Computer analyses were made in conjunction with the system testing to update the computer routine model. That results were used to verify the updated computer routine.

A preliminary system design effort culminated in the design of a 12-man oxygen/nitrogen generation system capable of providing a nominal supply of 26.1 lb/day of oxygen and 8 lb/day of nitrogen. The design includes a maximum load capability of 33.2 lb/day of oxygen and 22.6 lb/day of nitrogen.

The sections that follow in this report are concerned primarily with the areas of electrode development, system testing, and computer analyses. The computer routine and the preliminary system design have been documented separately with a computer utilization manual (Ref. 1) and preliminary design and specification report (Ref. 2).

Section 2 RESULTS AND TECHNICAL DISCUSSION

2.1 ELECTE DE DEVELOPMENT

2.1.1 Electrone Design Requirements

The electrode, an integral part of the electrolysis unit, must meet rigid electrical and physical requirements. (Refs. 3 and 4.)

The basic components of the electrode assembly in the LMSC electrolysis unit are:

(a) rim, (b) catalytic surface, and (c) catalyst. Functions of these components are:

- The rim besides serving as a rigid support, provides a path for current and voltage.
- The catalytic surface is the center of the electrolysis process.
- The catalyst's primary function is to reduce the chemical activation overpotential.

The design of the rim and the use of platinum black in a Teflon catalytic surface were established at the beginning of the program. Accordingly, all developmental effort was centered on the fabrication and application of a Teflon/platinum (Pt) surface on a nickel screen.

Theoretically, a catalytic surface can be divided into two main parts, one to provide physical strength and "flow through" properties for reaction gases and reactants, and a second part to provide maximum reactive area for the electrolysis process.

In actual operation, the matrix must provide a wettable or hydrophilic surface for the electrolyte to function and a pore structure with enough hydrophobicity to transfer the

reaction gases and repel the electrolyte. The pore structure must not be too dense so as to block the gas flow.

Another property that is important is electrical conductivity. Resistance must be low. Thus, the ideal electrode might be one with a maximum hydrophilic conductive reaction area as well as a porous hydrophobic structure for efficient gas passage.

Attainment of the above with Teflon and platinum is primarily a fabrication problem. In order to improve application of experimental mixes and conductivity of the final matrix, acetylinic carbon was added. The carbon also helped reduce the hydrophobic properties of the Teflon.

2.1.2 Test Facilities

The following two test facilities were available:

- Immersed Electrode Polarization Apparatus
- Laboratory Model Electrolysis Cell Apparatus

Immersed Electrode Polarization Apparatus. In order to study initial performance characteristics of the experimental electrodes, the Immersed Electrode Polarization Apparatus was designed and built. (See Fig. 2-1.) This apparatus is essentially two H cells – electrolysis and reference units, respectively – connected by an electrolyte bridge. The reference unit is equipped with three standard platinum electrodes, two for hydrogen and oxygen production and the third for a point of reference. The counter and working (experimental) electrodes are located in the electrolysis unit. The complete cell holds 300 cc of 30-percent potassium hydroxide solution.

A WENKING potentiostat is used to control and measure variations in voltage and current between the reference and working electrodes. Both units are vented to the hood.

This apparatus provides a quick and accurate evaluation of the effective surface area or reaction zone of candidate electrodes prior to final testing in the laboratory model electrolysis cell.

Fig. 2-1 Immersed Electrode Polarization Apparatus

Electrode samples were cut to a 1×2 cm size and spotwelded on a nickel lead. Data points were obtained from the electrode samples by measuring the reference voltage vs. the working voltage for different current densities.

Laboratory Model Electrolysis Cell Apparatus. The Laboratory Model Electrolysis Cell Test Facility designed and built by LMSC (Centract NaS1-7706) is routinely used for the purpose of obtaining long-term electrolysis cell data and for general cell development. In contrast to the Immersed Electrode Polarization Apparatus, this test facility simulates actual operational conditions. Four test stations are available. Each station is provided with the necessary inputs of current-controlled electrolysis power, an auxiliary ac power source, coolant, feed water, and inert gas purge. Ammeters are used for current readout, and both digital and strip chart readouts are used for voltage. A complete description follows.

Two test stations are shown in Fig. 2-2. The electrolyte circulation loop components can be seen in this figure. Electrolyte leaving the electrolysis cell is discharged into a reservoir. A magnetically-driven, plastic centrifugal pump is used to circulate the electrolyte. From the pump, the electrolyte is passed through an all-plastic shell and tube heat exchanger in which cold ethylene glycol flows through the shell side. A plastic valve is used to adjust the electrolyte flow as indicated by a flowmeter. After passing through the flowmeter, the electrolyte is returned to the cell. (See Section 2.2.1 for a complete description of the cell configuration.)

After startup, the operation of a cell is completely automatic. The main control functions are cell temperature and water feed. Cell temperature control is maintained with a miniature thermoswitch located at the electrolyte discharge from the cell. This switch provides a signal to a solenoid valve to provide coolant on demand. A heating circuit also is provided to permit testing at temperatures above ambient. Water feed control is achieved with a level control switch that provides a signal for liquid water feed to the reservoir on demand. Because the test stations were designed for automatic operation and unattended operation on a 24-hr a day basis, a number of safety

からしまるとは 大きのこと とうしゅうしゅう

Fig. 2-2 Electrolysis Cell Test Stations

functions were built into the control panels shown in Fig. 2-3. During normal operation, panel lights indicate the electrolyte cooling and heating cycles, that the pump is operating, and that the purge-gas (N₂) solenoids are closed. Unsafe operating conditions, if they occur, are indicated in the upper row of panel lights. Unsafe conditions would exist if there were no electrolyte flow; the electrolyte level in the reservoir were too high or too low; or the cell temperature were too high.

In the event of an unsafe condition, the safety circuit is activated to automatically shut down the test station. Electrolysis cell power is turned off; the pump, coolant, and water feed go off; and nitrogen purge to both sides of the cell is turned on. The panel light for whichever safety function shuts down the station remains on, indicating the cause of shutdown, until it is reset. All of the safety circuits contain latching relays to prevent the station from being reactivated automatically before the cause of the unsafe condition can be rectified.

Differential pressure control between the gas and electrolyte phases is accomplished by discharging electrolyte from the cell below the level of the inet. This provides a suction pressure in the electrolyte so that the generated gases can be discharged at ambient pressure and still maintain a positive gas-over-liquid pressure. Although it is not necessary for maintaining sufficient gas-back pressure, the generated gases are generally discharged into bubblers with a few inches of water back-pressure to give a visual indication of gas generation.

Cell performance data are automatically recorded on a continuous basis with an automatic data logging system utilizing a high-speed typewriter, digital clock, digital voltmeter, and multichannel scanner.

2.1.3 Cell Tests - Operating Parameters

<u>Voltage vs. Current Density</u>. The voltage-current density relationship (polarization curve) for an electrolysis cell is the primary descriptor of its performance. Because the gas generation rate is Faradaic, the power required to produce a given amount of

Fig. 2-3 Electrolysis Test Station Control Panels

gas is directly proportional to the cell voltage. It is, therefore, desirable to have a cell with a "flat" polarization curve, i.e., minimum voltage change with increasing current. This also applies to the small polarization apparatus measurements.

The cell voltage is the sum of four components:

$$V_{cell} = V_{oc} + V_{ir} + \eta O_2 + \eta H_2$$
 (2.1)

where

V = theoretical open-circuit cell potential

 $V_{ir} = IR loss$

 ηO_2 = xygen overvoltage

 ηH_2 = hydrogen overvoltage

The theoretical open-circuit cell potential for hydrogen and oxygen is 1.23 V. However, in an actual device, the open-circuit potential is closer to 1.0 V due to a mixed potential at the oxygen electrode. When current is passed between the electrodes, a voltage drop (or IR loss) is produced because of the cell resistance. For a given cell configuration, the resistance is fixed and the IR loss is proportional to the applied current.

The overvoltage contributions to the cell voltage are a complex function of catalytic activity of the active electrode material and the mechanism of the reaction at each electrode. A number of contributions to the literature have advanced theories to explain the existence of overvoltages and mechanisms of the reactions. These theories have been conflicting in most cases and no one explanation has gained universal acceptance.

While it is possible to determine electrode overvoltages by physical measurement in bulk electrolyte (Ref. 5), the use of these data to predict electrode performance in a practical cell is complicated by the presence of the matrices. A more practical

approach that was taken in this program was to insert a standard hydrogen reference electrode in the external electrolyte circulation loop. The voltages that were then monitored were related by:

$$V_{cell} = V_{O_2} + V_{H_2}$$
 (2.2)

where

V_{O₂} = oxygen electrode potential vs. standard hydrogen

V_{H₂} = hydrogen electrode potential vs. standard hydrogen

Comparing Eq. (2.2) with Eq. (2.1) it is seen that V_{O_2} and V_{H_2} each include a part of the open-circuit potential, V_{O_C} , and the IR loss, V_{IR} , in addition to the overvoltage. At open circuit, V_{H_2} is zero and V_{O_C} is equal to V_{O_2} . Since only the total cell resistance and not the resistance distribution across the cell was measured, the IR loss contribution to each electrode and absolute values of overvoltage could not be determined from the measurements of V_{O_2} and V_{H_2} .

These potentials, which will be referred to in subsequent sections as "electrode polarization," are useful parameters for evaluating electrolysis cell performance and give additional insight into the operating characteristics of different electrode and matrix materials and the effect of other operating parameters.

A typical electrolysis cell polarization diagram is shown in Fig. 2-4. The voltages shown are initial values and do not reflect long-term performance changes. The polarization of the oxygen electrode is more than three times as severe as that of the hydrogen electrode, and it is evident that cell performance improvement is more likely to be achieved by reducing the oxygen electrode polarization.

Temperature and Electrolyte Concentration. The cell temperature and KOH electrolyte concentration are operating parameters that are independent of each other in that each

Fig. 2-4 Electrolysis Cell Polarization

can be set arbitrarily and controlled without regard to the other. Their effects on the operating characteristics of the cell, however, are interrelated. The first criterion for choosing the optimum electrolyte concentration is to minimize the internal cell IR loss. As can be seen in Fig. 2-5, the minimum electrolyte resistance occurs between 25 and 30 weight percent.

The effects of temperature are two-fold: first, the temperature affects the operating cell voltage; and second, it affects the absolute humidity of the generated gases.

2.1.4 Experimental Results and Discussion

A summary of the experimental electrode testing that was conducted is presented in Table 2-1.

The following materials were used in the experimental work:

Material	Source
Teflon (TFE) Powder TL 126	Liquid Nitrogen Processing Corp.
Teflon Industrial Finish 50% TFE Teflon Suspension	E. I. Dupont DeNemours & Co.
Black Platinum	Englehard Co.
Nickel Powder	LMSC
Graphite	_
Expanded Nickel Screen	Exmet Diemesh Ccrp.

2.1.4.1 Preliminary Formulations

Initial work was confined to a Teflon/catalyst mix with the following desired properties:

- It must be easily applied to a nickel screen.
- The final catalytic surface must be hydrophilic, conductive, and porous.
- It must adhere to the screen.

Fig. 2-5 Electrolyte Resistance vs. Concentration

THE PROPERTY OF THE PARTY OF TH

Table 2-1

EXPERIMENTAL ELECTRODE TEST SUMMARY

			<u></u>			
Electrode Number	Catalyst Load (mg/cm ²)	Type of Test	Anode Voltage (V)	Current Density (mA/cm ²)	Test Time (hr)	Comments
T-1	Ni 87	Conductivity				Electrode surface nonconductive
T-2	Ni 50	Conductivity	1			Electrode surface nonconductive
T-3	Ni	Processing	1	i		Mixture would not adhere to substrate
T-4	Pt 13	Processing	i	İ		Formed nonconductive film
T-5	Pt 12	Processing			Ì	Formed nonconductive film
T-6	Pt 9	Processing			ļ	Formed nonconductive film
T-7 through T-18	Pt	Processing				No measurements made
T-19	Pt 20	Polarization	1.85	75	2	Disintegrated
T-20	Ni 20	Polarization				Immersed test - see Fig. 2-6
T-21	Ni 20	Polarization	2,00	50	2	Immersed electrode polarization test
T-22	Ni 30	Polarization	2.00	125	2	Immersed electrode polarization test
T-23	Ni 30	Polarization	2,00	150	2	Immersed electrode polarization test
T-24	Ni 45	Polarization	2.90	150	2	Immersed electrode polarization test
T-25	Pt	Processing			!	Mixture did not adhere to substrate
T-26 through T-28	p+	Processing		İ	į	
T-29	Pt 16	Polacization	2.00	50	2	Immersed electrode polarization test
T-30	Pt 20	Polarization	2.00	38	2	Immersed electrode polarization test
T-31	Pt 20	Polarization	2.00	80	2	Immersed electrode polarization test
T-32	Pt 40	Polarization	2.00	35	2	Immersed electrode polarization test
T-33	Pt 80	Polarization	2.00	115	2	Immersed electrode polarization test
T-34	Pt 25	Processing			_	No measurements made
T-35	2t 26	Processing			!	No measurements made
T-36	Pt 25	Processing	i		1	No measurements made
T-37	Pt 26	Processing	Ì			No measurements made
T-38	Pt 20	Processing			į	No measurements made
T-39	Pt 21	Processing			ļ	No measurements made
T-40	Pt 25	Polarization	1.98	150	2	Immersed electrode polarization test
T-41	Pt 25	Polarization	2.00	156	2	Linersed electrode polarization test
T-42	Pt 33	Polarization	2.00	150	2	Immersed electrode polarization test
T-43	Pt 22	Processing			_	No measurements made
T-44	Pt 16	Polarization	1.82	150	2	Immersed electrode polarization test
T-45 through T-52	Pt	Processing				No measurements made
T-53	Pt 30	Polarization	1.82	150	1	Immersed test - see Fig. 2-7
T-54	Pt 30	Polarization	1.80	150	i	Immersed test – see Fig. 2-7
T-55 through T-62	Pt	Processing			_	No measurements made
T-63	Pt SE	Polarization	2.2	150	7	Immersed electrode polarization test
T-64	Pt 35	Polarization	1.8	120	1	Immersed test; cellulose acetate binder
T-65 through T-70	Pt	Processing		1	_	Scale-up to 18 cm ² size
T-71	Pt 22	Electrolysis	2.18	150	294	See Fig. 2-10.18 cm ²
T-72	Pt 22	Electro'ysis	2.10	150	200	See Fig. 2-10,18 cm ²
T-73 through T-86	Pi l	Processing			ł	Scale-up to 90 cm ² size
Т 87	Pt 20	Electrolysis	2.3	150	< i	
T-88	Pt 6	Electrolysis	2.4	150	1	
T-89	Pt 11	Electrolysis	2.3	150	2	
T-90 and T-91	Pt 12	Processing			ì	No measurements made
T-32	It 20	Electrolysis	2.5	150	7	
T-93 through T-114	Pt	Processing		Ì	İ	No measurements made
T-115	Pt 20	Electrolysis	2.3	150	7	
T-116	Pt 20	Electrolysis	2.3	150	3	•
T-117 and T-118	Pt	Processing			i İ	No measurements made
T-119	Pt 20	Electrolysis				See Fig. 2-10
T-120	Pt 22	Electrolysis	2.3	150	6	
T-121	Pt	Processing				No measurements made
T-122	Pt 22	Flectrolysis	2.10	150	136	See Fig. 2-11
T-123	Pt 22	Electrolysis	2.16	150	142	See Fig. 2-11
T-124	Pt 22	Electrolysis	1.88	150	135	See Figs. 2-11 and 2-12
T-125	Pt 22	Electroly 3is	1.80	150	35	See Figs. 2-11 and 2-13
T-126	Pt 22	Flectrolysis	2.10	150	70	See Figs. 2-11 and 2-14
T-127	Pt 22	Structi:re				See Fig. 2-8
i					Ì	ĺ

Accordingly, many experimental formulations were prepared using various forms of Teflon and varying amounts of catalyst. Nickel powder and platinum black were used. The general process was to weigh the ingredients and to mix them with an easily removable solvent such as toluene. The resulting paste was spread on the expanded nickel screen, dried at room temperature, and pressed, either by rolling or pressing at a relatively high pressure. In some cases, the electrode was heat treated.

The initial electrodes did not meet all of the desired properties. Excessive pressures rendered the Teflon a completely hydrophobic film, and excess Teflon had the same effect. Insufficient Teflon did not give the required structural strength to the electrode, and the catalytic surface disintegrated in the electrolyte. Excessive amounts of carbon tended to decrease the structural strength.

There were difficulties encountered in the initial application of the paste on the screen. The fluid paste tended to go through the screen. This problem was solved by backing the screen with a porous Teflon sheet prior to application of the paste. The sheet was then stripped off the completed electrode.

Later on, the nickel screen was coated with a microfilm of Teflon prior to application of the matrix.

The first series of electrodes was prepared using nickel as a catalyst rather than platinum in an effort to reduce experimen al costs. These electrodes were relatively simple – merely a mix of Teflon, catalyst, and lubricant applied to a nickel screen. Electrode number T-20 is an example. Its formulation is as follows:

Teflon Powder (TL-126) 21.7 Percent
Nickel Powder 72.0 Percent
Graphite 6.3 Percent

The three ingredients were blended and approximately 0.1 gm of mineral oil was added. The resulting paste was rolled on a screen until a smooth catalytic surface

was formed. After heat treatment at 300°F for 20 minutes, the electrode was washed with toluene to remove the mineral oil, then dried at 100°C.

Conductivity and wettability of the electrode were satisfactory. However, it was not structurally strong. After several test cycles in the immersion polarization apparatus, the catalytic surface disintegrated when subjected to electrolytic action. (See Fig. 2-6.)

In order to improve the structural strength of the matrix, a commercially prepared Teflon suspension was used with the TL-126. Electrode number T-20A is an example.

Teflon Powder	24 Percent
Teflon Suspension	10 Percent
Nickel	48 Percent
Graphite	18 Percent

This electrode also disintegrated.

While certain techniques involved in the handling of Teflon mixes were developed in the work with nickel powder, it was found that substitution of platinum for nickel called for modification of procedures. Also, a decision was made to concentrate on using the Teflon suspension rather than the dry Teflon powder.

Formulations T-53 and T-54 were the first experimental platinum electrodes with electrical and physical characteristics approaching those of the acceptable commercial electrode. The formulation is as follows:

Teflon Suspension	40 Percent
Black Platinum	50 Percent
Graphite	10 Percent

The platinum and graphite were thoroughly blended in 3 to 5 cc of toluene. Then, the Teflon suspension was weighed into the mix and the formulation was worked with a spatula into a homogeneous paste. The paste was spread on a Teflon-backed screen

Fig. 2-6 Polarization of Experimental Nickel Electrodes

and rolled gently until it adhered to the screen. The electrode was dried (toluene removed) at room temperature for 2 hr, washed with distilled water, and finally dried in a 100°C oven.

Both T-53 and T-54 were porous, hydrophilic, conductive, and had sufficient structural strength to withstand the action of the 30-percent KOH solution. (See Fig. 2-7.)

During this phase of the work some effort was made to improve the porosity by incorporating a soluble material into the mix and, as a final step, washing the material out, leaving a porous matrix. This method was found to be generally unsatisfactory in that complete removal of the additive was difficult; hence, an impurity in the matrix.

Subsequent mixes using this basic formulation and varying the percentage of platinum from 40 to 60 percent showed that a satisfactory electrode could be prepared. It also was quite evident that the amount of pressing and rolling of the final catalytic surface had a marked effect upon the electrical uniformity of the final electrode. Excessive rolling tended to form a nonporous, nonconductive film. In general, the small electrodes were subjected to four passes through a small hand calendering device.

This phase of the work yielded an electrode that was conductive, hydrophobic, and offered enough catalytic area for efficient oxygen production in an immersed electrode apparatus.

Figures 2-8 and 2-9 are microphotographs of typical catalytic surfaces of an experimental electrode and a commercial electrode. Note the porosity.

2.1.4.2 Electrodes for the Electrolysis Test Setup

Electrodes for this application were scaled up to 18 cm² and were circular. Different requirements presented new problems.

ELECTRODE POLARIZATION (VOLTS)

Fig. 2-8 Micrograph of T-127 (80%)

Fig. 2-9 Micrograph of Commercial Electrode (80×)

The two primary electrode requirements for efficient cell operation are as follows:

- The electrode must offer a maximum hydrophilic catalytic surface to the electrolyte.
- The porous inner electrode must be hydrophobic, so that the reaction gases will be transferred.

A totally wet electrode tends to offer a barrier to the gaseous reaction products, and the bubbles of gas, so blocked, will reduce the available catalytic surface of the electrode. A rapid rise in voltage is an indication of this condition. By cutting the power to the cell, the electrode will recover, but will again rise rapidly when power is restored.

A different approach was made at this point. A slightly hydrophobic carbon electrode was prepared first. Then a platinum/Teflon catalytic surface was applied to the carbon surface. T-71 is an example.

Carbon Electrode.

Acetylinic Carbon 58 Percent
Teflon Suspension 42 Percent

One cc of toluene was added to the above and the blend was mixed. The paste was spread on a Teflon-backed screen, dried at room temperature, and rolled until a porous, slightly hydrophobic film was obtained.

Platinum Electrode.

Black Platinum 50 Percent
Teflon Suspension 50 Percent

One cc of toluene was added to the above and, after mixing, the paste was spread on the carbon surface, dried at room temperature, and washed with distilled water. The firished electrode was installed in the laboratory electrolysis unit. Results are shown on Fig. 2-10. The platinum loading was 22 mg Pt/cm².

This electrode compared quite favorably with some of the better commercial electrodes. At the end of 294 hr, the cell voltage had risen from 2.04 to 2.39 V, and the oxygen voltage had risen from 1.6 to 2.18 V.

T-72 and T-119 (Fig. 2-10) are examples of electrodes prepared in this manner. Catalytic loads are 25 and 30 mg/cm² Pt, respectively.

Figure 2-11 shows the laboratory performance of experimental electrodes that were used later in the one-man unit discussed below. These electrodes were all made from the same formulation in the same manner.

2.1.4.3 Large Electrodes for One-Man Unit

These electrodes were 90 cm². Two methods of preparation evolved from the work.

- A catalyst/Teflon/carbon paste is prepared and applied to a screen.
- A carbon electrode is prepared first and a catalyst/Teflon matrix is applied to the surface.

Screen Preparation. The screen was given a dilute sulfuric acid wash followed by a distilled water rinse. It was found that a micro-coat of Teflon on the screen improved the gas flow through the matrix as well as increased the adhesion of matrix to screen.

Treatment of Matrix. Rolling, pressing, and temperatures were kept to a minimum in order to combat the film-forming tendencies of Teflon.

Usable Formulations.

Teflon Suspension

40 to 60 Percent

Platinum Black

55 to 45 Percent

Acetylinic Carbon

10 Percent

A STATE OF THE PARTY OF THE PAR

Fig. 2-10 Voltage vs. Time Curves for T-71, '-72, T-119, and a Commercial Electrode Assembly

Fig. 2-11 Voltage vs. Time Curves for T-122 Through T-126

This mix, diluted slightly with toluene, can be applied to either a carbon/Teflon surface or a Teflon-backed screen. After drying at room temperature for 2 hr, the matrix can be rolled (calandered) four passes. It is a good idea to cover the surface with a thin polyethylene or wax paper sheet prior to rolling to prevent matrix pickup. Commercial wax paper was found to be satisfactory.

After the rolling operation, the matrix can be washed with toluene, dried at 100°C or less, and finally washed with distilled water.

<u>Initial Performance Checks</u>. Estimations of hydrophobic and hydrophilic properties can be made by dropping a drop of water on the surface. The water will remain a drop and will not wet a hydrophobic surface. A hydrophilic surface will wet, causing the drop of water to spread out. It is possible to make a rough estimation of contact angle and attending hydrophobicity or hydrophilicity of the catalytic surface.

The conductivity can be checked with a volt-ohmmeter. An interesting check on catalytic activity can be made by dropping one drop of methyl alcohol on a small portion of the electrode. A good electrode will cause the alcohol to burst into flame.

These various tests were used to provide a qualitative assessment of electrodes.

The final check is the installatic; of the electrode in the electrolysis unit. Figures 2-12, 2-13, and 2-14 show the electrical performance of three typical electrodes.

Analytical Work. Throughout the development period the purity of the oxygen generated by the experimental electrodes was monitored at various times by infrared and gas chromatographic analysis. No contaminants were detected.

Fig. 2-12 T-124 Performance in O_2/N_2 System

Fig. 2-13 T-125 Performance in ${\rm O_2/N_2}$ System

Fig. 2-14 T-126 Performance in O_2/N_2 System

2.2 ONE-MAN MODEL SYSTEM DESCRIPTION

A laboratory breadboard hydrazine/water electrolysis system was assembled to provide a testbed for evaluating the oxygen/nitrogen generator technique. The gas generation system was sized to nominally provide a one-man metabolic supply and 1/12 of a space station cabin leakage makeup. This system was integrated with a cabin and metabolic/leak simulator and was instrumented to provide automatic control of the atmosphere in the cabin simulator. A schematic of this testbed is shown in Fig. 2-15.

2.2.1 Oxygen/Nitrogen Generation System

The oxygen/nitrogen generator consists of a closed-loop, liquid-electrolyte circulation system in which the gas generator, a stack of electrolysis cells, is operated in conjunction with accessories that provide for water and hydrazine feed, waste heat removal, differential pressure control, and bubble separation. Thirty percent potassium hydroxide is used as the electrolyte. Figure 2-16 shows the installed oxygen/nitrogen generation system. In this system, all surfaces in contact with the electrolyte, with the exceptions of the electrodes and matrix support screens, are composed of plastic.

Electrolysis Cell Stack. The electrolysis cell stack is comprised of 17 unit cells of the configuration shown in Fig. 2-17. The unit cell is designed so that liquid electrolyte flows through the center of the cell between two absorbent matrices contiguous to the operating electrodes. The matrices provide phase separation between the liquid in the center of the cell and the gases being generated on the open structure of the operating electrodes. Manifolds for the generated gases and the electrolyte are located on the periphery of the cell spacers; O-rings are used for sealing purposes. Cutaway views of the cell assembly are shown in Figs. 2-18 and 2-19.

The electrode assemblies consist of a rim, a spacer, support screens, an asbestos matrix, and an active electrode material. The rim is used for current take-off; a pent-over tab, which extends outside the cell, is used to interconnect electrodes in the stack of cells. The electrode spacer and support screen assembly is spotwelded to the rim and serves as a mechanical support and current distributor for the active material. The electrode consists of a mixture of black platinum catalyst and Teflon applied to a nickel screen substruct

Fig. 2-15 One-Man Model $\mathrm{O_2/N_2}$ System Schematic

Fig. 2-16 O_2/N_2 Generation System

MATRIX SCREEN SPACER PERIPHERAL O-RING - MATRIX SUPPORT SCREEN (FINE MESH) ELECTRODE RIM ELECTRODE SUPPORT SCREEN (FINE MESH) PERIPHERAL 'O'- RING PERIPHERAL "O"- RING ELECTRODE SCREEN SPACER GAS SPACER ELECTRODE SUPPORT SCREEN (COARSE MESH) - ELECTRODE (145 SQ.CM.) MATRIX MATRIX SUPPORT SCREEN (COARSE MESH) PRECEDING PAGE BLANK NOT FILMED

Fig. 2-17 Cell Configuration

PRECEDING PAGE BLANK NOT FILM
2-33

FOLDOUT FRAME 2

Fig. 2-18 Electrolysis Cell Cutaway View

Fig. 2-19 Electrolysis Cell Reverse Side View

The matrix material is a highly refined asbestos. It is held in place between the electrode structure and a set of nickel support screens. Epoxy spacers located in the electrolyte space hold the opposing matrix support screens apart. Resilient elastomer material is used for pressure strips on the gas side of the electrode to ensure uniform contact between the matrix and the electrode. These strips also act as springs in the stack of cells to take up tolerances in the assembly.

22.

THE STATE OF THE PROPERTY AND THE PROPERTY OF

The cells are arranged in the stack in a cathode-anode-anode arrangement so that each internal gas spacer serves two adjacent cells. This reduces the cell spacer components required per cell (except for one end cell) to one electrolyte and one gas spacer. When the stack of cells is being assembled, alignment collars on the electrolyte spacers key the cell parts in the proper position and prevent misalignment.

The 17 cells in the stack are connected hydraulically in parallel and electrically in two series banks of eight and nine cells.

Heat generated by the electrolysis reaction is removed from the cell with the circulating electrolyte. By removing the heat in the external loop of the circulation system, close control of cell temperature can be maintained. This permits control of the dewpoints of the effluent gases below ambient, and thereby eliminates the problem of water condensation in gas lines, reservoirs, and valves downstream of the cell.

Water and N₂H₄ consumed in the electrolysis reaction in the cell are replaced by direct injection of the proper liquid in the external electrolyte circulation loop. This method of makeup is conducive to rapid electrolyte equilibration even at high operating currents.

Differential Pressure Controllers. Two differential pressure controllers are mounted directly on one end plate of the cell stack. These devices sense the electrolyte pressure in the cell stack and throttle the hydrogen and oxygen/nitrogen effluent gases to provide 25 in. of water differential pressure, gas-over-liquid. When gases are not being generally in the cell stack, nitrogen purge sclenoid valves open to provide gas

pressure. This differential pressure control is required to maintain the gas/liquid interface at the electrodes. The differential pressure controller assembly is shown in Fig. 2-20.

Bubble Separator. A bubble separator is located downstream of the cell stack in the electrolyte circulation loop, as shown in Fig. 2-15. The function of this device is to remove gas from the circulating electrolyte. The source of this gas is primarily dissolved gas in the feed water which is freed in the gaseous phase as water is consumed in the electrolysis reaction.

The bubble separator consists of hydrophobic and hydrophilic membranes assembled in a configuration, shown in Fig. 2-21, in which liquid can flow only through the hydrophilic membrane, and gas can flow only through the hydrophobic membrane. The gas side of the separator is vented through a differential pressure controller. This ΔP controller is reverse-acting to the cell stack ΔP controllers and is used to maintain the liquid pressure across the hydrophobic membrane higher than the gas pressure.

Electrolyte Pump. A pump is used to circulate the electrolyte. It is a commercial laboratory model consisting of a centrifugal impeller assembly which is driven with a magnetic coupling. All surfaces in the pump which contact the electrolyte are plastic.

Heat Exchanger. Waste heat generated in the cell stack is removed from the electrolyte, external to the cell stack, in a heat exchanger. The heat exchanger is a laboratory model shell-and-tube type device constructed entirely of plastic. Coolant is admitted to the shell side and electrolyte flows through the tube side.

Closed Reservoir. The reservoir is a variable-volume device designed for zero-gravity operation which is used to maintain system pressure. The configuration of this device is shown in Fig. 2-22. A rolling diaphragm works against a spring-loaded piston to maintain the pressure in the electrolyte circulation loop. Volume changes due to the water and hydrazine feed cycles are thus absorbed in the reservoir chamber.

Fig. 2-20 Differential Pressure Controller Assembly

Fig. 2-21 Bubble Separator Configuration

Colored Section Section 1997

Hg. 2-22 Closed Reservoir Configuration

The position of the piston shaft is utilized to control the water feed; this control technique and the function of the safety switch are described in detail in Section 2.2.3.

Water and Hydrazine Storage. Spherical storage tanks for water and hydrazine are mounted underneath the oxygen/nitrogen generator. The water tank contains a silicone rubber bladder, and nitrogen gas pressure is applied to the back side of the bladder. When water feed is required, a solenoid valve opens in the water feed line, allowing the nitrogen pressure to force water into the closed reservoir. The hydrazine is stored in a similar tank from which the bladder was removed.* It is mounted so that nitrogen pressure is applied at the top and hydrazine is withdrawn at the bottom of the tank. As with the water feed, a solenoid valve opens to allow hydrazine to enter the closed reservoir. A micrometer valve and flowmeter a e provided to set the hydrazine flow rate. The plumbing required to permit filling, draining, and pressurization of these tanks is shown in Fig. 2-15.

2.2.2 Cabin and Metabolic/Leak Simulator

The tank shown in Fig. 2-23 is used as a cabin simulator. It is equipped with gasket-sealed ports, an O-ring sealed door, and has a rotary fan mounted inside to assure gas-mixing. It was designed to be suitable for both vacuum and pressure applications. The volume of the tank is 30 cu ft.

The cabin simulator is integrated with the oxygen/nitrogen generation system and a metabolic/leak simulator system. It has, as well, an external sampling loop through which cabin gas as continuously circulated.

Metabolic/Leak Simulation. Metabolic consumption of oxygen and cabin leakage of oxygen and nitrogen are simulated by withdrawing gas from the cabin simulator at a controlled rate. Because oxygen cannot be withdrawn preferentially from the cabin,

^{*}The hielder material, silicone rubber, is not compatible with hydrazine. A suitable ethylene propylene, required a special order, and delivery time was not the program schedule.

Fig. 2-23 Cabin Simulator

the total amount of gas removed includes the metabolic and leakage oxygen, the leakage nitrogen, and an amount of excess nitrogen removed with the metabolic oxygen. A controlled amount of nitrogen is replaced in the cabin simulator as makeup for excess nitrogen removed with the metabolic oxygen. The flow control valve and flowmeter configuration used to accomplish this helabolic/leak simulation is shown in Fig. 2-15.

Cabin Atmosphere Sampling Loop. The cabin simulator is operated below ambient pressure at approximately 12 psia. In order to remove the metabolic/leak gas, a diaphragm pump is used to raise the pressure in a sampling loop outside the cabin to a pressure above ambient. A nonrelieving pressure regulator is used to control the pressure in this loop. Cabin gas is continuously circulated through the loop for gas composition monitoring. Provision also is made for introducing calibration gases in the portion of the sampling loop containing the gas-monitoring sensors.

2.2.3 Instrumentation

の語の方式を対象の語の音の音を表示と

THE PROPERTY OF THE PROPERTY OF THE PARTY OF

The model system is instrumented with automatic controls of the oxygen-nitrogen generator functions, cabin atmosphere control, power conditioning and both digital and analog readouts of system parameters.

All control logic and power conditioning are handled with solid-state circuitry. The system is also equipped with automatic safety circuits which will cause complete system shutdown if unsafe conditions occur. A block diagram of the system instrumentation is shown in Fig. 2-24. Detailed circuit diagrams are included in Appendix A.

2.2.3.1 System Controls and Safety

Water balance in the electrolyte loop is maintained by controlling the electrolyte volume. A set of microswitches turn the water feed solenoid valve on and off as the piston in the closed reservoir moves up and down. The movement of the piston shaft and the actuation

Fig. 2-24 O_2/N_2 System Control Block Diagram

ļ., -

A CALL OF THE PROPERTY OF THE PARTY OF THE P

of the microswitches by a detent in the shaft that occurs during a water feed cycle is shown in Fig. 2-25. In position (a), the piston is in the middle of the water feed control band. As water is consumed in the electrolysis reaction, the electrolyte volume shrinks and the piston travels upward to position (b). Here the lower microswitch closes and signals the water feed solenoid to open. As water feed continues, the piston travels down arough position (c) and continues to position (d), where closure of the upper microswitch signals water feed shutoff. The cycle described in this figure is completed as the piston returns to its starting position at (e).

The piston travels approximately 3/8 in. during a water feed cycle with a corresponding volume change of about 45 cc.

The control logic is such that water feed is commanded off whenever both microswitches are actuated, as would be the case if the piston shaft detent is completely above or below both switches. A manual override is provided so that the operator can command the water feed either on or off at any time.

Control of the electrolyte temperature, necessary because of the waste heat generated in the electrolysis reaction, is accomplished by using a thermoswitch in the electrolyte discharge from the cell stack to provide a control signal to a coolant solenoid valve. On demand, the solenoid valve opens to allow coolant (ethylene-glycol) to flow through the electrolyte heat exchanger. The flow rate is set with a flow control valve. Control of the electrolyte temperature also provides control of the dewpoints of the generated gases. The thermoswitch used in this system has a switch-closure setting of 75°F.

On-off control is provided for the hydrazine feed. A polaragraphic oxygen partial pressure sensor in the cabin simulator sampling loop provides the signal to the hydrazine-feed solenoid valve. When cabin PO₂ reaches an adjustable upper set point, the hydrazine solenoid opens to admit flow to the closed reservoir. The solenoid valve remains open until cabin PO₂ reaches an adjustable lower set point. A manual micrometer valve and flowmeter can be used to set the hydrazine flow rate during the

Fig. 2-25 Water Feed Control Mechanism

on portion of the feed cycle. Manual override is provided so that hydrazine can be commanded on or off at any time.

The electrolysis cell stack current control utilizes a high/low mode of operation. Both the high and low current values are adjustable. A signal from a pressure transducer is used to control the current mode. When the cabin total pressure (P_T) reaches an adjustable upper limit, the current is commanded to the low mode. The low mode is maintained until P_T reaches an adjustable lower set point; the current then switches back to the high mode. Manual override is provided so that the current mode can be commanded low, high, or off at any time.

In order to minimize the operating temperature of solenoid valves used in this system, a holding-current technique is employed. Whenever a signal to energize a solenoid valve coil occurs, a brief actuation current pulse is provided and then the current is reduced to a holding level. Power dissipation with this holding current is sufficiently love so that the solenoid valve bodies remain essentially at ambient temperature. This approach is especially useful for solenoid valves that remain energized closed for long periods, and increases the operating life of the valve seals.

Sensors and circuit logic are provided to effect automatic shutdown of the system in the event of an unsafe or abnormal operating condition. The shutdown logic, when actuated by a safety sensor signal, disables the electrolyte pump, turns off the water and hydrazine feed, opens the N_2 purge solenoid valves to purge the H_2 and O_2/N_2 chambers of the cell stack, and diverts the O_2/N_2 module effluent from the cabin simulator to a fume hood.

One of the safety sensors is located on the closed reservoir. Recalling that the water feed control utilizes a set of microswitches which operate on a detent on one side of the reservoir piston shaft, a similar detent and associated microswitch on the opposite side of the piston shaft provide a high or low reservoir volume signal. The safety switch is set to actuate \pm 150 cc on either side of the water feed control band. High-volume shutdown would occur in the event of overfeed of water or hydrazine. Low-

volume shutdown would occur in the event of lack of water feed or a leak in the electrolyte loop.

Overtemperature protection is provided in the form of a thermoswitch mounted in one end plate of the cell stack in contact with an end electrode. This sensor is a two-position sensor that actuates a warning light at 85°F and an automatic system shutdown at 105°F. Overtemperature shutdown would occur in the event of coolant supply failure or electrolyte pump failure.

Protection against excessive hydrazine feed is provided by a polarographic PO_2 sensor in the cell stack O_2/N_2 effluent gas line. When an adjustable minimum effluent PO_2 set point is reached, the hydrazine feed solenoid valve is automatically shut off.

Power loss protection is provided. In the event of the failure or even momentary loss of plant power, the system will automatically shut down and will not restart after power has been restored until manually reset.

The system control and safety instrument panel is shown in Fig. 2-26. The lefthand side of the panel contains all of the electronic instrumentation; the center panel has the data logging signal leads; and the righthand side contains the flow controls for the cabin and metabolic/leak simulation.

Fault diagnosis is provided by the upper row of lights on the instrument panel, which can be seen in this figure. Indicators include temperature warning, overtemperature shutdown, high/low volume shutdown, and safety PO₂ shutoff of the hydrazine feed. The safety indicator that indicates the cause of automatic shutdown will remain on until the system is manually reset. All of the safety circuits contain logic to prevent the system from being reactivated automatically before the cause of the unsafe condition can be rectified.

A manual override of the safety circuits is provided and is used during system startup at the beginning of a test.

Fig. 2-26 O₂/N₂ System Control Panel

2.2.3.2 Power Conditioning

Conditioning and regulation of the power for the electrolysis cell stack is accomplished with high-efficiency programmable current-switching regulators. A pulsewidth-modulated signal drives a power-switching amplifier, which produces a constant current through the cell stack.

The 17-cell stack is divided into an eight- and nine-cell electrical bank. Each bank has its own current regulator, but shares outputs from the current mode controller and oscillator.

Figure 2-27 illustrates the technique employed to obtain this type of regulation. Load current is sampled via a differential voltage developed across the shunt resistor, $R_{\rm S}$. This signal is amplified by the feedback amplifier and presented to the error amplifier where it is compared with a fixed reference signal. If a difference exists between the sampled signal and the reference signal, an error voltage will be developed and fed to the pulsewidth modulator. A fixed frequency (approximately 15 kHz) squarewave oscillator provides the trigger source for the pulsewidth modulator. The output of the modulator drives the switching transistor, Q.

The transistor serves as a switch and is either shut off or saturated. The length of time the transistor is "on" or saturated depends on the time length of the pulse emitted from the modulator. The operation of the circuit is divided into two cycles: first, when transistor Q is on; second, when Q is off.

During the interval when Q is on, a current path is provided from the positive side of the unregulated input source through inductor, L, shunt, R_S, the cell bank load, and through the transistor to the supply return. Switching diode, D, is back-biased during this interval; thus, no appreciable current flows through it. Capacitor, C, is allowed to charge to the cell bank voltage, thus storing energy. Since the voltage across the nonsaturating choke inductor, L, is constant, the current through the

Fig. 2-27 Power Conditioning Technique

The state of the s

choke — which is also the shunt, load, and transistor current — will increase linearly with time according to $e_L = L \, di/dt$. When the average current through the shunt equals the reference signal current level, the error is decreased to zero and the modulator turns the switching transistor off, which triggers the second cycle of operation.

When the current source through the choke is inhibited by the transistor switch, the voltage across the choke immediately reverses due to the decreasing choke current, thus forward-biasing and turning on switching diode, D. At this point, the choke and capacitor start to release their stored energies, thus providing a current source through the diode to the cell-bank load for this half of the cycle. When the average load current falls below the reference current level, the transistor is switched on again via the pulsewidth-modulator/error amplifier, and the cycle repeats.

The load currents are programmed by varying the reference current signal level to obtain high- and low-mode currents.

The efficiency of this circuit is inherently high as compared with conventional series regulators because the power losses are minimized by saturating the switching transistors and diode when they are turned on and not allowing the choke to become saturated.

Current regulation components of this circuit are mounted on a circuit card which plugs in behind the control panel. High-current components are mounted on an air-cooled cold plate, which can be seen in Fig. 2-28.

2.2.3.3 Control and Monitoring Instrumentation

The model system is instrumented with the sensors required to provide signal inputs for the control, safety, and power conditioning circuits described above. In addition, sensors and readouts are utilized to provide system performance data. The sensing and readout techniques used in the system are given in Table 2-2. Some of the instrumentation is shown in Fig. 2-29.

Fig. 2-28 O_2/N_2 System Side View

Table 2-2

SYSTEM CONTROL AND MONITORING INSTRUMENTATION

Parameter	Measurement Technique	Signal Use	
Cabin total pressure	Transducer	Current mode control	
	Transducer	Strip-chart recorder	
	Vacuum gage	Transducer check	
Cabin oxygen partial pressure	Polarographic analyzer	Hydrazine feed control	
	Polarographic analyzer	Strip-chart recorder	
	Paramagnetic analyzer	Polarographic sensor check	
Effluent oxygen partial pressure	Polarographic analyzer	Strip-chart recorder and PO ₂ safety	
Hydrazine feed valve on-off status	Electrical impulse	Strip-chart recorder	
Electrolyte temperature	Thermoswitch	Coolant solenoid valve control	
Module temperature	Thermoswitch 2-position	Overtemperature warning and shutdown	
Coolant temperature	Thermometer	Data logging	
Cell bank current	Shunt and digital voltmeter	Data logging	
Cell bank voltage	Digital voltmeter	Data logging	
Individual cell voltages	Digital voltmeter	Data logging	
High/low current mode time	High/low mode timers	Data logging	
Metabolic/leak flow rate	Rotameter and wet test meter	Data logging	
Nitrogen makeup flow rate	Rotameter	Data logging	
Hydrazine flow rate	Rotameter	Data logging	
Electrolyte circulation rate	Rotameter	Data logging	
Coolant flow rate	Rotameter	Data logging	
Hydrogen production	Wet test meter	Data logging	
Electrolyte volume	Microswitch - piston position	Water feel control	
-	Microswitch - piston position	High/low volume safety	
Cabin sampling loop pressure	Pressure gage	PO ₂ sensor calibration	
Module pressure	Pressure gage	Data logging	
Hydrazine tank pressure	Pressure gage	Safety check	
Bubble sparator gas evolution rate	Water volume displacement	Data logging	
Input electrolysis power	Power supply voltmeter and ammeter	Data logging	

Fig. 2-29 Test Instrumentation

2.3 SYSTEM TESTING

Testing of the one-man model O_2/N_2 system was conducted under this program with the objectives of evaluating the performance of various system components, establishing the characteristics of the cabin atmosphere control that can be achieved with this technique, and providing experimental data for the updating and verification of a computer routine model of the system.

2.3.1 Operating Procedure

The test plan that was established for meeting the objectives stated above involved a series of tests. Each test was conducted in a continuous operating mode with around-the-clock monitoring. The duration of each test was determined by the specific data requirements. Long-duration testing of the basic electrolysis system in previous programs (Ref. 3) has already established the capability of a system of this type to operate continuously for periods exceeding one year.

Startup-Shutdown Procedures. The detailed procedure for starting up and shutting down the system is described in Appendix B. The general approach to startup was to establish control conditions as rapidly as possible so as to allow the major part of a week for operation under automatic control conditions. This required that the cabin simulator be evacuated by increasing the metabolic/leak flow and manually adjusting the N_2 makeup flow to maintain the cabin PO_2 near the control band. At the same time, the hydrazine feed rate had to be increased to enrich the hydrazine concentration in the electrolyte.

Data Logging. While only the hydrazine concentration in the electrolyte, cabin total pressure, and cabin oxygen partial pressure were required data for computer routine analysis, additional module and system status data were recorded on an hourly basis to allow a thorough analysis of the system operating characteristics. The test data logs are included in Appendix C.

Test Monitoring. Around-the-clock monitoring was provided during system testing. The metabolic/leak and nitrogen makeup flow rates, which tended to drift, were adjusted as necessary. The cabin and effluent PO₂ sensors were calibrated every 8 hr in the first test, but little drift was observed. In subsequent tests, these sensors were calibrated at the beginning and end of each test.

The water storage tank was filled with a known volume at the beginning of each test and the residual was measured at the end. Hydrazine consumption was measured by draining and back-filling the hydrazine tank at the end of each cabin PO₂ cycle.

Gas and Electrolyte Sampling. Periodic sampling of the effluent gases was conducted to verify the PO₂ sensor readings. The samples were analyzed using gas chromatographic techniques.

Electrolyte samples were taken just prior to the closing of the hydrazine solenoid valve, to obtain the maximum hydrazine concentration, and just prior to the opening of the feed valve, to obtain the minimum hydrazine concentration. Chemical analysis of the electrolyte samples for hydrazine content utilized the direct iodate method with solvent (Ref. 6).

2.3.2 System Test Summary

A series of four tests was conducted on the one-man model $\,{\rm O_2/N_2}\,$ system. The test sequence logic is shown in Fig. 2-30.

The objectives of the first test were to check out the operation of the fully integrated O_2/N_2 generation system as well as the cabin and metabolic/leakage simulator, and to establish the test procedure for subsequent tests. Highlights of this test include:

- Successful operation of the zero-gravity closed reservoir and bubble separator.
- Verification of P_{total} control for a fixed metabolic and leak rate at a control band of 12.28 to 12.30 psia.

Hg. 2-30 System Test Sequence

- An indication of cabin PO₂ control at a control band of 2.85 to 2.95 psia.
 A full PO₂ cycle was not completed.
- Nitrogen in the effluent oxygen measured over a range from 0 to 91 percent.

Several system and procedure modifications indicated by this test were implemented before proceeding to the next test. These modifications are discussed in detail in Section 2.3.3.

Test 2 was the initial baseline run of the system at the design conditions; that is, at a one-man metabolic load with a one-man proportion of a space cabin leakage. Summary results of this test showing the cabin total pressure and oxygen partial pressure control are given in Fig. 2-31.

The baseline was rerun in Test 3 to provide data for verification of the computer model revision. The summary results of this test are shown in Fig. 2-32.

In Test 4, both the high/low currents and the metabolic load were varied to provide a different set of data points. In the one-man system, changes in metabolic load were made, approximately corresponding to reducing the crew size from 12 men to 3, 6, and then to 10 men. Summary results are shown in Fig. 2-33.

2.3.3 Test Results and Discussion

2.3.3.1 Test Logs and Performance Data

Test 1 Results. An operational checkout test was conducted for a duration of 86 hr. The Time/Event Log for this test is presented in Table 2-3.

Cabin PO₂ and hydrazine concentration for the period from 46 to 81 hr elapsed time are shown in Fig. 2-34. The shaded area in this figure is the control signal band that was shifted at 54 hr to core at for the higher pressure in the sensor canister. PO₂ control capability was demonstrated by the turnaround of the cabin PO₂ at approximately 61 hr. A full cycle of the PO₂ variated by the turnaround of a problem with the water feed, which occurred at 81 kg.

Fig. 2-31 Test 2 - Cabin Atmosphere Control

Fig. 2-32 Test 3 - Cabin Atmosphere Control

Fig. 2-33 Test 4 - Cabin Atmosphere Control

Table 2-3
TEST 1 - TIME/EVENT LOG

Elapsed Time (hr)	Events/Actions	Criteria
8	Leak in the plumbing between the cell stack and the cabin simulator detected and corrected	High cabin pressure observed
18	N ₂ H ₄ flowmeter replaced	Range of flowmeter incorrect
54	Calibration of PO ₂ sensors changed from 174 to 155 mm Hg	Calibration not previously corrected for 2 psig in sensor canister
78.8	Automatic safety shutdown	Water feed failed "on," and high-volume shutdown actuated
81	System returned to manual mode	
86	Test terminated	

At this point the reservoir piston had moved, because of the hydrazine addition, to a point where both the "on" and "off" water feed control microswitches were actuated. An error in the control logic permitted the "on" command to override the "off" command and resulted in continuous feed until the high reservoir volume signal shut down the system.

The system was restarted and operated for another 5 hr in a manual mode.

The following modifications to the system and test procedure were implemented as a result of this test:

• The PO₂ safety shutdown logic was modified to simply shut off the hydrazine feed solenoid valve, rather than shutting down the entire system. That is,

Fig. 2-34 Test 1 - Partial Plot of Performance

when the PO₂ in the unit effluent decreased below 150 mm, the hydrazine feed would be stopped. This change resulted from observing a much faster hydrazine decay rate in the electrolyte than had been anticipated.

- A wet test meter was installed downstream of the metabolic/leak flowmeter to provide a more accurate measure of the gas removed from the cabin.
- The water feed control logic was corrected to assure positive shutoif in the event both "on" and "off" switches were actuated.
- The startup procedure was changed to include an initial hydrazine feed higher than the set point as a test expediency to shorten the test time required to achieve PO₂ control.

Test 2 Results. An initial baseline run was conducted with the objective of determining the P_T and PO_2 control characteristics at design conditions. The metabolic/leak and nitrogen makeup flow rates were set at the design point of a one-man metabolic load (1.84 lb/day) and a cabin leakage of one-twelfth of the spacecraft leakage rate of 13 lb/day at 10 psia. The P_{Total} control signal band was set for 12.23 to 12.25 psia, and the cabin PO_2 control signal band was set for 2.8 to 2.9 psia. The high/low current modes were set approximately at 150/50 mA/cm².

A performance plot and the Time/Event Log for the 70 hr of this test are shown in Fig. 2-35 and Table 2-4, respectively.

P_{Total} is not shown on the figure; it remained within the control band for the entire test.

It can be seen in these performance data that the PO₂ control and hydrazine concentration in the electrolyte were erratic; although not out of control.

During the first PO₂ cycle, several upward adjustments of the hydrazine feed rate were made because the PO₂ overshoot of the control band appeared excessive and the cycle time appeared to be too long. At 39 hr, the hydrazine tank ran empty, before the end of the feed cycle, and was recharged. The amount of hydrazine in the original

Fig. 2-35 Test 2 - Performance Data

Table 2-4
TEST 2 - TIME/EVENT LOG

Elapsed Time (hr)	Events/Action	Criteria
2.7	Metabolic/leak and N ₂ makeup set to correct settings for automatic control run; N ₂ H ₄ at 6.0 flowmeter reading	N ₂ H ₄ feed cycled off automatically
10.5	Adjusted N ₂ H ₄ to 7.0 flowmeter reading	Cabin PO ₂ appeared to be overshooting, indicating N ₂ H ₄ feed rate too low
29	Adjusted N ₂ H ₄ to 7.5 flowmeter reading	N ₂ H ₄ feed cycled on and flow rate appeared low
36 to 36.2	N ₂ makeup supply cylinder replaced	No-flow indication on flow control panel
39 to 40	Recharged N ₂ H ₄ tank; flow set high to restore hydrazine concentration in electrolyte	Tank ran empty
42	Adjusted N ₂ H ₄ to 5.8 flowmeter reading	Cabin PO ₂ appeared to be decreasing too rapidly
51	Decreased coolant supply temperature to 35°F	Coolant to heat ex- changer not cycling
53.5	Adjusted N ₂ H ₄ to 5.8 flowmeter reading	
56	Adjusted N ₂ H ₄ to 7.7 flowmeter reading	Cabin PO2 leveled off
57.5 to 58.0	Repeated adjustment of N ₂ H ₄ downward to 6.5 from 7.6	
59	Adjusted N_2H_4 to 6.0 flowmeter reading	
61	Adjusted N2H4 to 6 flowmeter reading	
62	Adjusted N2H4 12 7.0 flowmeter reading	
66 to 66.5	Adjusted N_2H to 6.9 flowmeter reading, then to 6.5	

charge had been predetermined based on the nitrogen load and was not expected to run out for another 12 hr. This incident shed doubt on the accuracy of the hydrazine flowmeter and led the test conductors to frequently adjust the hydrazine flow control valve setting during the remainder of the test in an effort to find the correct setting.

At the conclusion of the test it was still not clear why, during the first 40 hr of the test, a higher indicated flow rate was required than during the remainder of the test. Analysis of the hydrazine concentration in the solutions used to charge the tank revealed a discrepancy. In the first charge, bottles of hydrazine fresh from the manufacturer and labeled 95 percent were diluted with water by an amount which would make the desired solution 64 percent. Several bottles of this "95 percent" solution were analyzed and found to contain 64 percent solution. Because of the mislabeling, the actual solution had been diluted for charging the tank to approximately 40 percent. Further checking showed that the second charge of the tank was made with 64 percent solution.

Two problems with the hydrazine flow control were identified during the test, only one of which had an easy solution. First, the micrometer valve was too coarse and was replaced with a finer needle valve after the test was completed. Second, the valve body was made of 316 stainless steel, which was not completely compatible with hydrazine. A very slight decomposition of hydrazine inside the valve caused small gas bubbles to form in the flow steam. These small bubbles collected on the ball floats in the rotameter and gave rise to erroneous flow rate readings. The procedure for the next test was modified to include draining and recharging the hydrazine tank at the end of each feed cycle. By measuring the volume of the charge and the residual for each cycle, the consumption of hydrazine and the average feed rate for each cycle could then be determined.

Test 3 Results. The baseline operating conditions used in Test 2 were utilized in this test with the objective of obtaining a sufficient number of repeatable PO_2 cycles to provide data for verifying the computer model revision. The only condition that was modified was the PO_2 control signal band. It was changed from 2.8-2.9 psia to 2.85-3.00 psia as a result of recalibration of the sensors and the control electronics.

The performance data for Test 3 are shown in Fig. 2-36 and the Time/Events Log in Table 2-5.

During the first PO₂ cycle, several operator adjustments of the hydrazine flow control valve were made in seeking the proper flow setting. After the first cycle, no further adjustments of the flow setting were made for the duration of the test.

The only problems that occurred during the test were two occasions when the hydrazine solenoid valve did not open on command. The first time this happened (at 6 hr elapsed time), the test conductor observed it immediately and was able to manually put the valve open. On the second occasion, however, the command and failure to open occurred at 41 hr and was not noticed until 42.7 hr. This resulted in the higher PO₂ overshoot shown in Fig. 2-36 for the fourth cycle. With this exception, adequate PO₂ control was demonstrated and reasonably repeatable cycles were obtained.

For the next test, the procedure for measuring hydrazine consumption was changed from a volume measurement to a weight measurement. This was done to increase the accuracy of the measurement and to reduce the handling required.

Test 4 Results. This test was run for a period of 86 hr with the objective of providing performance data at conditions different from the baseline. The performance data and Time/Event Log for this test are shown in Fig. 2-37 and Table 2-6, respectively.

During the first 29 hr of the test the baseline conditions were used, the only difference being that the low current was set at approximately 75 mA/cm 2 rather than the baseline value of 50 mA/cm 2 .

At 29 hr, the metabolic/leak and nitrogen makeup flow rates were changed corresponding to a change in a 12-man cabin from a 12-man to a 3-man metabolic load with no change in the cabin leakage.

After 45 minutes of operation under these conditions it was observed that cabin pressure, P_{T} was steadily increasing with the current in the low mode. This indicated

Fig. 2-36 Test 3 - Performance Data

Table 2-5 TEST 3 - TIME/EVENT LOG

	TEST 3 - TIME/EVENT LOG			
Elapsed Time (hr)	Events/Action	Criteria		
1.1	Recharged N_2H_4 tank; consumption on first cycle = 425 cc	Procedure		
4.75	Adjusted metabolic/leak flowrate to 2,190 cc/min	Metabolic leak wet test meter reading low, at 2,110 cc/min		
6	N ₂ H ₄ solenoid stuck closed; manually pulsed to open	N ₂ H ₄ feed signal on; no flow observed		
8.5	Decreased N ₂ H ₄ flowmeter reading from 8.8 to 7.7	Noted electrolyte pressure increasing at approximately 1 in. H ₂ O/hr		
10	Increased N ₂ H ₄ flowmeter reading to 8.8	Noted electrolyte pressure dropping rapidly and effluent PO ₂ climbing		
11.5	Decreased N_2H_4 flowmeter reading to 8.0	Effluent PO ₂ safety signal		
15.2	Decreased N_2H_4 flowmeter reading to 7.9	Effluent PO ₂ safety signal		
15.5	Recharged N_2H_4 tank; consumption on second cycle = 580 cc	Procedure		
26	Recharged N_2H_4 tank; consumption on third cycle = 510 cc	Procedure		
37.3	Recharged N_2H_4 tank; consumption on fourth cycle = 410 cc	Procedure		
42.7	N ₂ H ₄ solenoid stuck closed; manually pulsed to open	Noted feed signal on; no flow indicated		
50.5	Recharged N_2H_4 tank; consumption on fifth cycle = 425 cc	Procedure		
60.3	Recharged N_2H_4 tank; consumption on sixth cycle = 370 cc	Procedure		
End of test	Measured N ₂ H ₄ consumption on seventh cycle = 585 cc	Procedure		
	Measured H ₂ O consumption for duration of test = 2,330 cc	Procedure		

Fig. 2-37 Test 4 - Performance Data

Table 2-6
TEST 4 - TIME/EVENT LOG

Elapsed Time (hr)	Events/Actions	£				
11	Recharged N ₂ H ₄ tank; consumption on first cycle = 575 gm	Procedure for m. asuring N2H4 average feed rate				
15,5	Adjusted N_2H_4 feed rate to 3.93 valve setting					
18.5	Recharged N_2H_4 tank; consumption on second cycle = 351 gm	Procedure				
28.5	Adjusted high current down to 13.5 A	Current reading too high				
29	Changed meta/leak and N ₂ makeup from 12-man to 3-man metabolic rate	Test condition change				
29.5	Recharged N_2H_4 tank; consumption on third cycle = 441 gm	Procedure				
29.75	Changed meta/leak and N ₂ makeup to 4-man rate	Test condition change(a)				
45.2	Changed to 5-man rate	Test condition change (a)				
47.5	Changed to 6-man rate	Test condition change (a)				
49	Recharged N ₂ H ₄ tank; consumption on fourth cycle = 1,299 gm	Procedure				
49.5	Changed to 10-man rate	Test condition change				
55.7	Changed to 12-man rate	Test condition change				
57.5	Recharged N_2H_4 tank; consumption on fifth cycle = 422 gm	Procedure				
63. 5	Adjusted high current to 13.5 A	Current too high				
64.7	Changed currents: low mode 7.6 A; high mode 12.8 A	Test condition change				
66	Recharged N ₂ H ₄ tank; consumption on sixth cycle = 320 gm	Procedure				
72	Recharged N_2H_4 tank; consumption on seventh cycle = 289 gm	Procedure				
76 to 77	Shut off H_2O and N_2H_4 feed and inserted toggle valve in H_2O feedline. Return both to auto feed mode	Indication by increasing system pressure that H ₂ O solenoid leaking				
85.2	Recharged N_2H_4 tank; consumption on last cycle = 513 gm	Procedure				
End of test	Measured H ₂ O consumption for duration of test = 1,870 cc	Procedure				

⁽a) System pressure rising

that the net flow of gas out of the cabin was less than the net gas flow in from the electrolysis module, and therefore, that P_T control could not be achieved under these conditions. Since an error of only 1 percent in the setting of the metabolic/leak flow rate could cause this problem, it was decided not to continue operation so close to this lower limit of P_T control.

At 29.75 hr, the metabolic/leak and nitrogen makeup were changed corresponding approximately to a four-man metabolic rate. This change restored P_T control and current-mode cycling was observed, although most of the time was being spent in low mode.

From 33 to 48 hr, a steady increase in electrolyte pressure was observed. During this period, electrolyte was manually removed from the system in 10-cc amounts approximately every half-hour to prevent the reservoir from reaching the high-volume shutdown position. Cause of the volume increase was first attributed to the increase in hydrazine concentration and decrease in water consumption resulting from the reduced metabolic load. Step-changes in the metabolic load were continued, going to a five-man rate at 45.2 hr, a six- man rate at 47.5 hr, a 10-man rate at 50 hr, and back to the baseline 12-man rate at 55.7 hr.

After the six-man rate was reached, the problem of increasing electrolyte volume appeared to have been solved.

At 64.7 hr, the high/low currents were changed as shown in Fig. 2-37.

A slow leak through the water feed solenoid valve was detected at 76 hr. A toggle valve was inserted and was operated manually for the remainder of the test. When the solenoid valve was disassembled at the end of the test, it was found that a piece of Teflon plumber's tape used to wrap the pipe threads on the fittings connecting to the valve had settled across the valve seat. This prevented complete closure of the valve and explains the increasing electrolyte volume that was observed during the run at the four- and five-man metabolic rates.

2.3.3.2 Data Analyses

Control Characteristics. The equation describing the variation of cabin total pressure with time can be expressed as (Ref. 7)

$$\frac{dP_{T}}{dt} = \frac{1}{\lambda T} \frac{dM_{T}}{dt}$$
 (2.3)

where

$$\lambda T = \frac{V_C (MW)_T}{RT}$$

$$\frac{dM_{T}}{dt} = \dot{m}_{T_{in}} - \dot{m}_{T_{out}}$$

In these equations, $\dot{m}_{T_{out}}$ represents the net mass outflow rate from the cabin, i.e., metabolic consumption plus cabin leakage. The total gas, oxygen plus nitrogen, supplied to the cabin by the O_2/N_2 generator is represented by $\dot{m}_{T_{in}}$ and is related to the number of cells, n, and the applied current, Y, by

$$\dot{m}_{T_{in}} = \gamma n Y \qquad (2.4)$$

where γ is a constant.

Because the gas input rate is directly proportional to the current, two-position, high/low current control of P_T will have a cyclic characteristic and $\frac{dP_T}{dt}$ will be linear.

An expression for the cabin oxygen partial pressure variation with time, similar to that for $\,{}^{\rm P}_{\rm T}$, can be written as

$$\frac{dPO_2}{dt} = \frac{1}{\lambda O_2} \frac{dMO_2}{dt}$$
 (2.5)

where

$$\lambda O_2 = \frac{V_C (MW)_{O_2}}{RT}$$

$$\frac{dM_{O_2}}{dt} = \dot{m}_O - \dot{m}_O$$

the net oxygen input rate, $\dot{m}_{O_2~in}$, can be expressed in terms of O_2/N_2 system parameters as

$$\dot{m}_{O_2 \text{ in}} = \gamma n Y - \alpha n C - \beta n C Y$$

where

 α and β = constants

C = hydrazine concentration in electrolyte

The hydrazine concentration in the electrolyte at a point in time (t) can be expressed as

$$C = \frac{X}{m} + \left(C_0 - \frac{X}{m}\right) \exp \frac{(-mnt)}{V}$$
 (2.6)

where

X = hydrazine feed rate

m = reaction rate constant = f(Y)

 C_o = hydrazine concentration at $t = t_o$

V = electrolyte volume

It is readily apparent that the control of cabin PO_2 achieved by controlling the hydrazine feed rate, X, is not independent of the current which is used to control P_T .

To illustrate the characteristics of the control of P_T and PO_2 and their interaction, a portion of the analog data from Test 3 was plotted on an expanded time scale and is shown in Fig. 2-38. First, it can be seen that the P_T control is cyclic, with a linear rate of change as predicted by the mathematical description.

Two characteristics of the PO_2 control are evident in this figure. The effect of the exponential time function in the mathematical expression for rate of change of PO_2 is apparent. Furthermore, it can be seen that the P_T cycles are superimposed on the PO_2 curve.

The effluent PO_2 curve on the far left of this figure, which is the oxygen partial pressure in the O_2/N_2 mixture being generated in the cell stack, shows the effects of both the high/low current and the hydrazine feed. The rapid cycling of the effluent PO_2 is the result of the high/low current cycling. The broad cycle of the envelope is the result of the hydrazine concentration in the electrolyte increasing when the hydrazine feed is on, and decaying when the feed is off.

Hydrazine Reaction Efficiency. Data from Test 3 were used to determine the hydrazine reaction efficiency, which is defined as the mol percent of the hydrazine reacting at the anode. The following is a summary of the methods of determination and the results:

- a. Nitrogen in the anodic effluent (determined by effluent PO_2 sensor) was compared to the hydrazine feed (determined by measuring volume of N_2H_4 consumed per cycle of the cabin PO_2). This method yielded a hydrazine reaction efficiency of 63 percent.
- b. Nitrogen in the anodic effluent (above method) was compared to nitrogen in the cathodic effluent (determined by gas chromatographic analysis). This method yielded a hydrazine reaction efficiency of 59 percent.

Fig. 2-38 Sample Data From Test 3

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

c. Nitrogen in the cathodic effluent (determined by the increased cathodic flow-rate) was compared to the hydrazine feed determined in a. This method yielded a value of 62 percent.

Method b. involved point measurements whereas methods a. and c. utilized values averaged over a several-hour period. Details of the computations, data, and data references are given in Tables 2-7, 2-8, and 2-9. The results shown in these tables were averaged to obtain the efficiences given above.

It should be noted that the inefficiency of the hydrazine reaction, which amounts to that hydrazine reacting undesirably at the cathode, is a function of the catalytic activity of the cathode. Single-cell tests have demonstrated that by sufficiently reducing the catalytic activity of the cathode, cathodic hydrazine reaction can be essentially eliminated. However, an increase in electrode polarization also occurs. Data from these tests are shown in Tables 2-10 and 2-11. In Table 2-10, the data were taken at a current density of 50 mA/cm², and in Table 2-11 at 75 mA/cm². Two separate cells were run, one containing the standard commercial (black platinum/Teflon) cathode and the second in which bare expanded nickel screen was used as the cathode with no platinum catalyst. From these limited data, it is apparent that the low catalytic activity cathode does not induce hydrazine decomposition. Note the lower cathodic flow rate for the low-activity cathode and the absence of N₂ in the chromatographically analyzed cathodic gas samples.

Reaction Rate Constant. The hydrazine reaction rate constant is defined as

$$m = \frac{1}{C} \frac{dC}{dt}$$

and is truly a constant for a fixed cell geometry, temperature, and current. The effect of current at constant temperature on the value of m was determined using Test 3 data and is shown graphically in Fig. 2-39. Reducing the cathode catalytic activity to improve the hydrazine reaction efficiency would affect the value of the reaction rate constant.

Table 2-7

an entire transfer of the statement of t

THE RESERVE OF THE PARTY OF THE

HYDRAZINE CONVERSION EFFICIENCY - METHOD 1

Efficiency		(p)	56.5	69.1	74.3	62.8	66.7	49.1
N ₂ fn	Anode Effluent (mol)	(tr)	6, 56	7.08	6.08	5.34	4.93	5.73
Mode ent	Low (A)	(g)	75.64	71.53	75.78	74.30	74.28	74.94
Total Mode Current	High (A))	224.5	225.8	226.2	227.9	226.2	228.4
Time	Low (hr)	(t)	3, 89	4, 43	4.61	4.39	3.91	3.02
Mode Time	High (hr)		8.04	7.57	8.04	6.26	6.64	6.97
N2 in Anodic Effluent	Low (%)	(e)	63.4	59.7	52.3	63.2	55.8	65.7
N2 In.	High (%)		27.4	32.0	24.7	24.5	23.5	28.1
: :	(hr.)	(p)	11, 93	12.0	12,65	10.65	10,55	9.99
	Cycle Time	(၁)	6.17 to 18.1	18.1 to 30.1	30.1 to 42.75	42.75 to 53.4	53,4 to 63,95	63, 95 to 73, 94
ri ex	Feed (mol)	(Q)	11.6	10.2	8.2	8.5	7.4	11.7
No.H.	Feed (cc)	(a)	580	510	410	425	370	585
	Cycle		H	2	ဗ	4	S	6

Volume of hydrazine consumed – Determined by measuring volume of initial charge and residual in hydrazine tank for each PO2 (a)

(b) Amount of nitrogen contained in contained in contained in contained in feed = Col. a × 0.002.
(c) Cycle time - Times correspond to N₂H₄ feed cycles (see Fig. 2-36).
(d) Δt - time interval between N₂H₄ feed initiations.
(e) Percentage of N₂ in anodic effluent - Average N₂ concentration, determined by measuring the area under the PO₂ effluent curve (Fig. 2-36) for the high and low current modes for time periods (c), dividing by Col. (d) to obtain PO₂ avg., and computing the value of %N₂ avg = [(P_T - PO₂ avg)/P_T]× 100 where P_T ≈ 12.23 .
(f) Savg = [(P_T - PO₂ avg)/P_T]× 100 where P_T ≈ 12.23 .
(f) Authority and low current mode time).
(f) Authority are conformed by measuring total time on P_T strip-chart recorder during which P_T was increasing continued by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the number of %N₂ avg.
(f) Authority are conformed by the numbe

(g) Total current, high and low mode - Total current in each mode, that is, average current during a cycle multiplied by the number of ceils; determined by measuring the area under the current curve (Fig. 2-36) with a planimeter, dividing the area by (d) to obtain average current, and multiplying by 17, the number of ceils.

(h) Number of mol of N₂ in anodic effluent during the cycle — determined by computing the value of mol N₂ = 0.0096 [(Col. e)H(Col. f)H(Col. g)H + (Col. e)L(Col. f)L(Col. g)L] where 0.0096 is the constant k converted from SCC/min to mol/hr.

(i) Hydrazine conversion efficiency – Determined by computing the value $\eta(\text{efficiency}) = (\text{Col. h/Col. b}) \times 100$

Table 2-8

HYDRAZINE CONVERSION EFFICIENCY - METHOD 2

Elapsed Time	1 (A)	Percent N ₂ (H ₂)	N ₂ in H ₂ (mol/hr)	Eff PO ₂ (mm)	N ₂ in O ₂ (%)	N ₂ in O ₂ (mol/hr)	Efficiency (%)
(hr)	(a)	(b)	(c)	(d)	(e)	(f)	(g)
-0.2	12.9	6.8	0.359	510	22.1	0.465	56.5
1.27	4.3	13.3	0.310	160	75.8	0.533	63.3
1.38	13.1	7.3	0.399	480	26.7	0.572	58.9
7.0	13.1	4.3	0.210	570	13.0	0.279	57.0
16.13	13.3	7.9	0.449	500	23.6	0.512	53.3
30.25	13.2	3.1	0.148	600	8.4	0.181	55.1
37.33	13.4	8.7	0.514	450	31.2	0.683	57.1
59.73	13.4	7.4	0.415	430	34.3	0.751	64.5
60.0	4.5	14.4	0.372	130	80.2	0.590	61.3
65. 7	13.4	5. 4	0.282	530	19.0	0.416	59.6
65. 95	4.4	12. 9	0.302	290	55.7	0.400	57.1

- (a) Current Average cell current for the two cell stacks.
- (b) Percentage of N_2 in cathodic effluent gas chromatographic analysis.
- (c) Nitrogen generation rate at cathode determined by the following computation:

$$(H_2)_e = 2 \times 17 \times 0.0096 \times Col. a$$

 $\dot{m}_{TC} = (H_2)_e \times X_1 \times X_2$,

where $(H_2)_e = H_2$ generated electrochemically (mol/hr)

m_{TC} = total gas generated at cathode (mol/hr)

 $X_1 = \text{mol/hr } N_2 \text{ from } N_2H_4$

 X_2 = mol/hr H₂ from N₂H₄ = 2X₁

 X_1 = Col. $b \times \dot{m}_{TC}$ = Col. $b \times H_2 \times Col$, $c + 3X_1$

 $X_1 = [Col. b \times (H_2)_e] \div [1 - (3 \times Col. b)]$

- (d) Effluent PO_2 Instantaneous value of effluent PO_2 at the time the gas chromatograph sample was taken (see Fig. 2-28).
- (e) Percentage of N₂ in anodic effluent Determined by computing $%N_2$ = (P_T Col. d)/P_T.
- (f) Nitrogen generation rate at anode Determined by computing \dot{m}_{N_2} = 17(0.0096) × Col. a × Col. e.
- (g) Hydrazine conversion efficiency Determined by computing η = Col. f/(Col. c + Col. f \times 100)

Table 2-9

HYDRAZINE CONVERSION EFFICIENCY - METHOD 3

Cycle	Cathodic Gas Flow (cc)	Cathodic Gas Flow (mol)	(H ₂) e (mois)	Efficiency (%)
	(a)	(p)	(c)	(d)
1	1,130	46.5	40.4	82.5
2	1,320	54.3	38.9	50.0
3	1,100	45.2	41.7	83.4
4	1, 120	46.1	33.7	49.0
5	1,090	44.8	34.4	53.2
6	1,040	42.7	34.9	77.8

- (a) Cathodic gas flow (cc) Total cathodic gas per cycle measured with well test meter (See Appendix C)
- (b) Cathodic gas flow (mol) Total cathodic gas per cycle converted from cubic centimeters to mols.
- (c) Electrochemically generated H_2 Determined from data in Table 2-8 by computing

$$(H_2)_e = 2 (0.0096) \left(I_{T_h} t_h + I_{T_l} t_l \right)$$

(d) Hydrazine conversion efficiency - Determined by computing

$$\dot{m}_{T_{C}} = (H_{2})_{e} + (X_{1})_{N_{2}} + 2(X_{1})_{H_{2}}$$

$$X_{1} = \dot{m}_{T_{C}} - (H_{2})_{e}$$

$$\eta = \frac{N_{2}H_{4} \text{ feed (mol)} - X_{1}}{N_{2}H_{4} \text{ feed (mol)}} \times 100$$

Table 2-10

HYDRAZINE CONVERSION - TEST 1

	Cell	(v)	2.156									2,192				-	
Cell With Reduced Cathode Activity	N_2H_4	(mol/ liter)	1.70				1,68										
Cathod	gen t (%)	H2									0	С		0		rent)	
peonpe	Nitrogen Content (%)	² 0						53.7	60.3				46.4			Decomposition Rate (No Current)	/min
With R	ow min)	$^{ m H_2}$		35, 8						35, 5					35.3	n Rate	O_2 Side – 12. 6 cc/min H ₂ Side – None
Cell	Flow (cc/min)	02			17.9					17.8					17.9	posítion	Side – 1 Side – 1
	Time		1:33	2:03	2:07		2:33	2:45	3:02	3:15	3:19	3:30	₹:03	4:28	4:30	Decom	H2 1
	Cell	(V)	1.666									1.668					
	N ₂ H ₄	(mol/ liter)	1.42			1.37											
Cell	gen t (%)	H2								9.6	9.6			8.8		rent)	
Standard Cell	Nitrogen Contont (%)	02					43.2		42.4				27.6			No Cur	'mtn 'mtn
S	ow, mfn)	H2			46.2			46.6							46.3	n Rate (0.9 cc/ 6.7 cc/
	Flow (cc/min)	20		17.4				16.9						-	17.2	Decomposition Rate (No Current)	O ₂ Side -10.9 cc/min H ₂ Side -16.7 cc/min
	Î.		1:33	1:40	1:57	2:30	2:38	2:57	2:53	3:11	3:29	3:30	4:12	4:18	4:20	Decom	O ₂ H ₂

Table 2-11

HYDRAZINE CONVERSION - TEST 2

1									-						
	Cell Voltage	(V)	2.324												
Cell With Reduced Cathode Activity	N_2H_4				1,99				1.97						
Sathode	gen nt (%)	H2						0			0				
duced (Nitrogen Content (%)	02				37.9	38.9	•		37.3		37.3			
With Re	Flow (cc/min)	H2		51.6						53,1	-				
Cell	F1 (cc/	02		26.3						28.5					
	Time		11:18	11:31	11:45	12:11	12:23	12:47	1:09	1:50	2:18	2:35			
	Cell Voltage	(V)	1.807	•					,				-		
	N ₂ H ₄	$\binom{\text{mol}}{\text{liter}}$					1.97	_		1.80					
Cell	gen it (%)	H2						_	-				7.8	7.6	
Standard Cell	Nitrogen Content (%)	02				37.6		37.9	38.2		36.5				36.2
Ω.	ow mtn)	H2		0.02	-							67.6			
	Flow (cc/min)	02			26.3							26.2			
	Tíme		11:14	11:15	11:26	11:36	11:45	11:48	12:00	1:07	1:40	1:45	1:58	2:04	9.95

Fig. 2-39 Reaction Rate Constant ve. Current Density

Computer Model Constants. The experimentally determined constants required for the computer model updating, which is described in Section 2.4, were obtained by averaging several data points from Test 3. The analysis is described below.

The volumetric anodic gas generation rate, oxygen plus nitrogen, can be expressed as

$$\dot{\mathbf{U}}_{\mathbf{T}} = \mathbf{k} \, \mathbf{n} \, \mathbf{Y} = \mathbf{k} \, \mathbf{n} \, \frac{\mathbf{I}}{\mathbf{A}}$$

where

U_T = total gas production, ec/min

k = 0.35 (constant)

n = 17 (number of cells)

Y = current density, mA/cm²

I = current amps

A = 90 (electrode area, cm²)

Therefore:

$$\dot{U}_{T} = \frac{(0.35)(17)(10^{3})}{90}I = 66.1I$$

That portion of $\rm\,U_T^{}$ that is nitrogen can be expressed in terms of the polar agraphically measured effluent $\rm\,PO_2^{}$ and the total pressure of the effluent gas as

$$\dot{\mathbf{U}}_{\mathbf{N}_{2}} = \left(\frac{\mathbf{P}_{\mathbf{T}} - \mathbf{PO}_{2}}{\mathbf{P}_{\mathbf{T}}}\right)_{\text{effluent}} \dot{\mathbf{U}}_{\mathbf{T}}$$
 (2.7)

At the point in the system where effluent PO₂ is measured, the effluent gas pressure is the same as the cabin total pressure.

The empirical formula for \dot{U}_{N_2} is of the form

$$\dot{\mathbf{U}}_{\mathbf{N}_2} = \mathbf{a} \, \mathbf{n} \, \mathbf{C} + \mathbf{b} \, \mathbf{n} \, \mathbf{C} \, \mathbf{Y} \tag{2.8}$$

or

$$\dot{U}_{N_2} = a n C + b n C \frac{I}{A}$$
 (2.9)

Inserting known values, this becomes

$$\dot{U}_{N_2} = 17 \text{ a C} + 189 \text{ b C I}$$
 (2.10)

Combining the two equations for $\dot{\mathbf{U}}_{\mathbf{N}_2}$ results in the expresssion

66.1 I
$$\frac{P_T - PO_2}{P_T}$$
 = 17 a C + 189 b C I (2.11)

Because the hydrazine concentration does not change rapidly with time while the current is cycling every few minutes, as was shown in Fig. 2-38, it is possible to make a hydrazine concentration determination and record a set of both high and low currents and high and low PO₂ effluents essentially at that concentration. The values of the constants a and b can then be determined by solving a simple set of two simultaneous equations in two unknowns.

Several data points were taken during Test 3 in the manner described above. The experimental data and the resulting values of the constants are shown in Table 2-12. The averages of these values are:

a = 4.77

b = 0.0134

Table 2-12
EXPERIMENTAL CONSTANTS DETERMINATION

Elapsed Time	C(a)	Current,	I (A)	Par Pressur	tial re, PO ₂	Constants		
(hr)		High Low		Hìgh	Low	а	b	
0	2.00	12.9	4.30	490	240	4.67	0.0129	
6.2 8	0.78	13, 1	4.25	590	500	4.23	0.0153	
15.9	2.15	13.3	4.45	470	210	4.88	0.0128	
18.2	0.99	13.0	4.5	570	440	5.36	0.0089	
37.5	2.17	13.4	4,55	440	160	5.26	0.0177	
40.9	0.76	13.25	4.35	590	490	4.87	0.0118	
60.0	2.75	13.2	4.5	420	130	4.30	0.0163	
64.14	0.83	13.35	4.35	590	490	4.59	0.0114	

(a) Concentration of hydrazine.

2.3.3.3 System Analysis

 O_2/N_2 Generator System. In general, the performance of this system was satisfactory, as evidenced by the performance data presented previously in this section. However, some problem areas were identified as a result of system testing.

The current regulators that were used to condition 28 Vdc power and provide constant current to the electrolysis cell stack showed a tendency to drift, especially in the high current mode. These are prototype devices that were designed under Contract

NAS1-9728. Their performance could be improved by incorporating temperature compensation and additional filtering.

The performance of the prototype bubble separator used in the system was not satisfactory. By the end of Test 2, the pressure drop across the hydrophilic membrane had increased to the point where the electrolyte flow rate was becoming marginal. The unit was then rebuilt with new membranes before proceeding with the system testing. Although clogging of the membrane with particulate matter may be a partial explanation of the problem, it was also observed, with fresh membranes installed, that the initial pressure drop across the membrane was sufficient to cause nucleation of gas bubbles on the downstream side. While this may only be a materials problem, concurrent effort in a separate program is being directed to a new bubble separator design concept.

Controls. The cabin PO₂ control technique that was tested during this program employs a fixed hydrazine input rate during the portion of the control cycle where nitrogen addition to the cabin is called for. When the cabin PO₂ reaches a minimum set point, the hydrazine feed is shut off.

The hydrazine feed rate is set so that the PO_2 in the effluent N_2/O_2 mixture from the electrolysis module will not be driven below a set minimum. Because of this limitation on hydrazine input rate, the cabin PO_2 overshoots the control band during the long period of time (usually several hours) required to increase the hydrazine concentration in the electrolyte sufficiently to effect PO_2 turnaround. Furthermore, it was found to be difficult to accurately set and maintain the very low flow rate (less than 1 cc/min) required. Because of the modular design concept of the full-scale system, this limitation would remain in the larger system.

Under steady-state conditions, the control of cabin PO₂ achieved in the model system with his technique was acceptable: A typical cycle of cabin PO₂ at a set control band of 2.85 to 2.95 psia in Test 3 took approximately 8 hr with an overshoot to approximately 3.1 psia. However, this control is sluggish and may be a limiting factor in the ability of the system to respond to sudden changes in demand.

A modification in the control technique in which the hydrazine feed rate is increased to allow a fast ramp of the nitrogen output with two additional set points that cycle the hydrazine feed off at minimum effluent PO₂ levels corresponding to the high and low current modes would affect a faster turnaround of cabin PO₂ and substantially reduce the overshoot. The system also would then be less sensitive to the hydrazine feed rate, and extreme accuracy of the flow rate setting would not be necessary.

The results of attempting to operate the system with the total gas demand very close to the minimum total gas generation rate in Test 4 were described previously. In this case, it was attempted to operate with a three-man metabolic load and the baseline cabin leakage. Under these conditions, the cell stack was generating gas, in the low current mode, at 459 cc/min and the metabolic/leak and nitrogen makeup were supposed to be set at 801 and 333 cc/min, respectively. This meant that the net was out was supposed to be 468 cc/min, or only 9 cc/min more than the generated gas rate.

From these numbers, it can be seen that only a 1-percent error in metabolic/leak flow setting could cause loss of control; and further, that a combined error in metabolic/leak, nitrogen makeup, and cell current of 2 percent would have the same effect. In future tests it would be advisable to incorporate micrometer flow controls and very accurately calibrated flow indicators for high- or low-limit operation.

2.4 COMPUTER ANALYSES

Experimental data from the one-man model system testing were used to revise and update the computer routine model of the system developed previously under NASA Contract NAS1-7706. In order to verify the computer routine, the program was run using average simulated test conditions, and the results were then compared with the actual test performance. Parametric modeling was performed of the hydrazine feed rate, the gas consumption, metabolic demand, and high/low current modes. These efforts are described in this section.

It is noted that the original computer routine and its revision and updating have been documented separately in a Utilization Manual. Therefore the complete program listing and case inputs are not included in this report.

2.4.1 Model Revision

The empirical functions which appear in the computer routine model, their original values, their revised values, and the equation in which they appear are shown in Table 2-13.

The values of α and β were obtained by applying a density conversion to the experimentally determined values of a and b given previously in Section 2.3.3.

The value of γ was obtained by applying a density conversion to the value of K. The value of K was revised to account for the water vapor in the gas and approximately a 1-percent shunt current.

The values of m were taken from the experimentally determined relationship of m to current density shown in Fig. 2-39.

<u>Hydrazine Feed Rate</u>. The effect of hydrazine feed rate on PO_2 control is shown in Figs. 2-40 and 2-41. The hydrazine feed rate in the first case is 8.35×10^{-4} mols/min/cell and 1.16×10^{-3} mols/min/cell in the second case. These figures illustrate

Table 2-13
COMPUTER MODEL REVISIONS

Function	Relation	Initial Value	Revised Value					
α	$\alpha = \rho a$	4.25×10^{-3}	5.33 × 10 ⁻³					
β	$\beta = \rho b$	2.43×10^{-5}	1.55×10^{-5}					
γ	$\gamma = \rho k$	4.35×10^{-4}	4.13×10^{-4}					
m ₁	$\mathbf{m}_1 = \mathbf{f}(\mathbf{Y}_1)$	3.28×10^{-4} @ 150	$4.32 \times 10^{-4} @ 150$					
m ₂	$m_2 = f(Y_2)$	$2.52\times10^{-4} \odot 50$	$3.52 \times 10^{-4} @ 50$					
C _{max} PO ₂ =	$\frac{P_{T_i} \lambda T + \left[(\gamma n \cdot Y) \right]}{\lambda t}$	······	$Y) - \left(\dot{m}_{O_2 \text{ out}}\right) \Delta t$					
C =	$C = \frac{X}{m} + \left(C_0 - \frac{X}{m}\right) \exp\left(-mn t/v\right)$							

the critical effect of hydrazine flow rate on the PO_2 control. In Fig. 2-40, the hydrazine concentration reaches an equilibrium value of 1.82 M, and insufficient nitrogen is being generated to effect turnaround of PO_2 . At the higher hydrazine feed rate, in Fig. 2-41, the hydrazine concentration reaches 2.53 M, where sufficient nitrogen is being produced to cause the PO_2 to cycle. The rate constants had not been revised at the time of these computer runs and therefore the cycle time shown in Fig. 2-41 is not representative.

: }

Fig. 2-40 Initial Run of Revised Computer Routine

FOLDOUT FRANCE 4

FOLDOUT FRAME 1

ورافقوه والمراجع

Fig. 2-41 Effect of Increased Hydrazine Feed Rate

PRICEDING PAGE BLANK NOT FILMED²⁻⁹⁵

FOLDOUT FRAME 4

PRICEDING PAGE BLANK NOT FILM

Test 3 Conditions. Several runs were made simulating the conditions of Test 3. Because many of the system parameters varied with time, average values of the parameters were used in the computer runs. The averaging process introduces small errors in that it assumes a linear relationship between current and rate constant. The best match that was achieved in three runs is shown in Fig. 2-42. The envelope and characteristic of the PO₂ control are in good agreement with the Test 3 data (cycles 1, 2, 3, 5, and 6 of Test 3 are plotted).

In order to achieve agreement on mass balance, the computer case input for \dot{m}_{Tout} had to be decreased by approximately 10 percent. This is indicative of a combination of inaccuracies in metabolic/leak and nitrogen makeup instrumentation. This problem area was discussed previously in Section 2.3 under system analysis.

2.4.2 Chaining

The versatility of the computer routine was increased by adding a chaining capability. This makes it possible in a single run to handle a sequence of step changes in case inputs. In effect, step changes in inputs during the run recycle the time base to make the conditions of P_T , PO_2 , and C at time = t become the initial conditions for the next time interval.

A computer run was made simulating the step changes of a portion of Test 4. The results are shown in Fig. 2-43. As with the simulation of Test 3, the envelope and characteristics of PO₂ control are in good agreement, and the differences in cycle rate are attributed to errors introduced by the averaging process. The computer case input values for this run are given in Table 2-14. The case inputs are described in Ref. 1. The points in the run where the step changes were made are indicated in Fig. 2-43.

PRECEDING PAGE BLANK NOT FILMED

2.4.3 Space Station Orbital Simulation

As part of the preliminary design of a 12-man O_2/N_2 system for space station use, the computer routine was used to predict the control characteristics. A 94-min orbit with 58 min of daylight and 36 min of darkness was used. The high/low current mode on the sunlight side was set at nominal ± 10 percent and on the dark side at 50 percent of nomial. Fifty-three orbits are shown in Fig. 2-44. The long time constant shown for the PO_2 control cycle indicates a need for the development of a more responsive PO_2 control technique.

Table 2-14

COMPUTER RUN 2-45 - CASE INPUTS

Run No.	T ₀	T _{Max}	PO_2 I	P _{tot} I	DMO ₂ Out	DM _{tot} Out	C ₀	\mathbf{x}_2
2- 4 5a	0	1,020	2.82	12.26	0.55	0.75	1.48	1.4×10^{-3}
2- 4 5b	1,020	1,110	-	-	0.31	0.51		1.37×10^{-3}
2- 4 5c	1,110	2,040		_	0.27	0.53		1.37×10^{-3}
2-45d	2,040	2,325	-	_	0.37	0.68	_	1.15×10^{-3}
		Run No.	Y ₁	Y ₂	M ₁	\mathtt{M}_2		<u> </u>
		2-45a	152	76	4.35×10^{-4}	3.66 × 10 ⁻⁴	1	
		2-45b	153	72	4.36×10^{-4}	3.61 × 10	1	
		2-45c	150	77	4.32×10^{-4}	3.66 × 10	1	
		2-45d	153	74	4.36×10^{-4}	3.64 × 10	4	

EOLDOUT FRAME 1

Fig. 2-42 Test 3 Simulation

Fig. 2-43 Test 4 Simulation

2-101

Fig. 2-44 Space Station Orbital Simulation

2.5 PRELIMINARY SYSTEM DESIGN

大学の一個などのできる。

是一个人,我们就是一个人,我们就是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也是一个人,他们也

The preliminary design of a full-scale, 12-man oxygen/nitrogen generation system was conducted under this program utilizing the experimental data described in this report as a basis.

The preliminary design package included performance specifications, preliminary design layout drawings, interfaces and packaging, and supporting system analyses. A summary description of the preliminary system design and performance specification is presented in the following paragraphs.

2.5.1 PD System Description

In developing the design approach for the hydrazine water electrolysis system, the first consideration was an appropriate maintenance concept. Maintenance analysis revealed that the best approach was to avoid breaking into the electrolyte circuit to perform any maintenance tasks. This approach eliminates the necessity for handling the electrolyte in zero gravity and can be implemented with no significant weight penalty. The maintenance concept that was evolved consists of providing individual, self-contained hydraulic assemblies with no electrolyte connections; the electrolyte flow circuit is completely internally manifolded. These assemblies, or modules, are completely sealed to eliminate electrolyte leakage.

A reliability analysis was conducted to determine the optimum size and number of these individual modules. Various sizes and, hence, various numbers of modules were considered, ranging from one to nine active modules required for the 12-man capacity. Each module was first optimized in terms of redundant components to a point where no significant increase in reliability could be achieved by adding additional redundancy. The total number of modules, active plus spares, required to achieve a reliability goal of 0.9980 was then determined. These various systems were examined to determine which system required the least total weight.

PRICEDING PAGE BLANK NOT FILMED

The analysis showed that a system employing nine active modules and five spare modules has the lowest weight. The approach to packaging these modules in a swing-out cabinet was to install 12 modules — nine active plus three installed spares — as shown in the Frontispiece of this report. The modules are mounted on rails to allow for easy installation and removal. Disconnects are provided in the rear of each module for the oxygen/nitrogen and hydrogen effluent gases, supply water and hydrazine, and the nitrogen required for pressurization. With this design, no electrolyte fittings need to be disconnected to replace a module. The cooling required for each module is provided by a conduction cold plate that interfaces between the module and the cabinet.

The swing-out cabinet also contains individual replaceable electronic assemblies for each module, water conditioning equipment, and a central status panel so that data supplied to the onboard computer system can be manually monitored.

The complete system to support 12 men for 180 days at the nominal metabolic and leakage rate with a reliability of 0.9980 requires a maximum of 7,830 watts of power and has a total fixed weight of 862 lb, including spares. The weight of an individual replaceable module is 46.6 lb.

2.5.2 Summary System Specification

A summary of important performance parameters is presented in Table 2-15. The data presented include input power, waste-heat rejection rates, and inlet and outlet flow rates and pressures. Flow rates so noted represent the day-night average. Included are data for the nominal and the maximum cabin leak rates.

Table 2-15
SUMMARY SYSTEM PERFORMANCE SPECIFICATION

Aspect	Nominal	Maximum
Oxygen generation rate (lb/day) (a)	26.1	33,2
Nitrogen generation rate (lb/day) (a)	8.0	22.6
Hydrogen generation rate (lb/day) (a)	4.75	7.59
Water consumption (lb/day) (a)	29, 3	37.3
Hydrazine consumption (lb/day) (a)	9.72	27.5
Power consumption		
Day (unregulated 40 to 60 Vdc)(W)	7,830	13,300
Night (regulated 28 Vdc)(W)	3,180	5,160
Heat rejection		
Day (Btu/hr)	13,700	23,900
Night (Btu/hr)	4,720	7,960
N ₂ supply (lb/day)	0.07	0.09
Output pressure, H ₂ and O ₂ /N ₂ , variable (psia)	1 to 12	1 to 12
Operating temperature (° F)	7 5	75
Number of active modules	9	12
Total system weight, with spares (lb)	862	862
Weight of replaceable module (lb)	46.6	46.6

^(a)Day-night average

Section 3 CONCLUSIONS

3.1 ELECTRODE DEVELOPMENT

Experimental electrodes were developed with performance comparable to the commercial material used in previous programs. Their suitability for use in a hydrazine electrolysis system was demonstrated by the performance of three of these electrodes as anodes in the one-man model O_2/N_2 system testing. Exploratory testing of reduced-catalyst cathodes also indicated an approach to improvement in hydrazine reaction efficiency.

3.2 ONE-MAN MODEL O_2/N_2 SYSTEM

The one-man model O_2/N_2 generator integrated with a cabin and metabolic/leak simulator provided an excellent testbed for evaluating the hydrazine water electrolysis approach to a noncryogenic O_2/N_2 generation system. Significant data concerning component performance, system control techniques, and cabin atmosphere control characteristics were obtained. Adequate control of the cabin simulator total pressure and oxygen partial pressure were demonstrated.

3.3 COMPUTER MODEL

The computer routine model, developed under Contract NAS1-7706, was revised and updated based on the system test data. Reasonable agreement was obtained between the test and computer prediction of space cabin atmosphere control. The revised computer routine predicts adequate control of a full-scale 12-man space station cabin.

3.4 PRELIMINARY SYSTEM DESIGN

A preliminary design effort with emphasis on maintainability, reliability, a sound basis of experimental data and proven concepts resulted in the preliminary design and specification of a 12-man O_2/N_2 generation system suitable for space station use. The complete system to support 12-men for 180 days at the nominal metabolic and leakage rate with a reliability of 0.9980 requires a maximum of 7,830 watts of power and has a total fixed weight of 862 lb, including spares. The weight of an individual replaceable module is 46.6 lb. The system is capable of handling a maximum cabin leakage of 33.7 lb/day.

Section 4 REFERENCES

- 1. Lockheed Miss s & Space Company, <u>Utilization Manual Nitrogen Generation Control Analysis</u>, by K. G. Barany, (OXNIP) BRCWOO, Sunnyvale, Calif., Mar 1970
- 2. ----, Preliminary Design of a Space Station Electrolytic Oxygen-Nitrogen Generator, by B. M. Greenough, LMSC-A977498, Sunnyvale, Calif., 5 Mar 1971
- 3. W. J. Conner, B. M. Greenough, and G. M. Cook, "Design and Development of a Water Vapor Electrolysis Unit," NASA CR 607, Sep 1966
- 4. R. G. Haldeman, "Electrode-Matrix Materials," reprinted from 21st Annual Proceedings Power Sources Conference, May 1967
- 5. B. M. Greenough, "The Development and Preliminary Design of an Oxygen-Nitrogen Generation System," NASA CR 66940 Jun 1970
- 6. Andrith and Ogg, The Chemistry of Hydrazine, John Wiley & Sons, New York, 1951
- 7. B. M. Greenough and T. M. Olcott, "A Spacecraft Electrolytic Oxygen-Nitrogen Generation System," presented at the Space Technology and Heat Transfer Conference, ASME, Jun 1970

LIBRARY CARD ABSTRACT

Research was conducted in the development of a noncryogenic technique of hydrazine/ water electrolysis for generating oxygen and nitrogen for use in long-duration manned space missions. A breadboard one-man model O_2/N_2 generation system was integrated with a cabin and metabolic/leak simulator. Automatic control of the cabin total pressure and cabin oxygen partial pressure was demonstrated for various metabolic loads with a fixed cabin leak: i.e. A total of four one-week tests were run. Experimental electrodes were tested in the system in addition to some 5,000 hr of cumulative single-cell tests. A computer routine model of the O_2/N_2 generation system was revised and verified with experimental test data. A preliminary design and specification of a full-scale 12-man O_2/N_2 system was completed yielding a system capable of handling up to 33.7 lb/day cabin leakage and a 12-man metabolic load. Total system weight, including spares, is 862 lb. The system requires a maximum of 7,830 watts under nominal conditions and has redundancy and spares for a reliability of 0.9980 for a 180-day mission.

Appendix A ONE-MAN MODEL SYSTEM CIRCUIT DIAGRAMS

Circuit diagrams of the control logic, power conditioning, and voltage/current monitors used in the one-man model $\rm O_2/N_2$ system are presented in this Appendix.

Fig. A-1 Control Logic Card 1

PRECEDING PAGE BLANK NOT FILMED

Fig. A-2 Control Logic Card 2

PRECEDING PAGE BLANK NOT FILMED

Fig. A-3 Current Regulator

Fig. A-4 Voltage/Current Monitor

Appendix B

OPERATION INSTRUCTIONS FOR THE ONE-MAN MODEL $\mathbf{O_2/N_2}$ SYSTEM

A. Manual Shutdown

- 1. Emergency shutdown: Disconnect labelled power supply cords behind monitoring consoles.
- 2. Normal shutdown:
 - a. Turn off N₂H₄ feed switch.
 - b. Turn off H₂O feed switch.
 - c. Turn on N₂ purge switch.
 - d. Switch to manual, low current mode on electrolysis module control panel.
 - e. Turn off module power switch.
 - f. Turn off dia-pump switch.
 - g. Turn off KOH pump switch.
 - h. Turn off power supplies in this order:
 - (1) 28 Vdc (PS 3)
 - (2) 28 Vdc (PS 2)
 - (3) 5 Vdc (PS 1)
 - i. Press POWER OFF button.
 - j. Pin reservoir.
 - k. Check N_2 purge flow rate and adjust.

B. Manual Start-up

- 1. Switch positions:
 - a. Module power off
 - b. Module mode manual, low
 - c. Safety override on
 - d. N_2H_4 feed off
 - e. N₂O feed off
 - f. N₂ purge on
 - g. KOH pump off
 - h. Dia-pump off

	2.	Press POWER ON DUCTION.
	3.	Turn on power supplies in this order:
		a. 5 Vdc (PS 1)
		b. 28 Vdc (PS 2)
		c. 28 Vdc (PS 3)
	4.	Press RESET button.
	5.	Turn on KOH pump switch: Adjust variac to 70 or flow of 5 units on flowmeter
		C. Check to see that bubble separator gas line is not drawing in H ₂ O; adjust
		flow downward with flow control value if there is suction pressure or bubble
		separator.
	6.	Turn on H ₂ O feed switch.
	7.	Turn on module power switch; check that low currents (modules A and B) read
		~11.2 mV.
	8.	Switch to manual high current; check that currents (modules A and B) read
		~33.8 mV.
	9.	Turn on dia-pump switch. When P _{Total} reaches 12.3 psia (~61.5 on recorder),
		do the following:
		a. Switch to automatic current.
		b. Turn off N ₂ purge.
		c. Turn off safety override.
		d. Set metabolic leak to cc/min. (SS).
		e. Set N_2 makeup to cc/min. (SS).
		f. Turn on N ₂ H ₄ feed to cc/min. (SS).
		g. Set pressure regulator to 1 psig.
c.	Star	rt-up From Automatic Shutdown
	1.	Switch positions:
		a. Module power - off
		b. Module mode - manual, low
		c. Safety override - on
		d. N_2H_4 feed – off
		e H ₂ O feed - off
		f. N ₂ purge - on
		-

- g. KOH pump off, variac 0
- h. Dia-pump off
- 2. Press RESET button.
- 3. Turn on KOH pump switch; adjust flow with variac (\sim 70 V).
- 4. Turn on H₂O feed switch.
- 5. Turn on module power switch; check low currents (~11.2 mV), then check high currents (~33.8 mV).
- 6. Turn on dia-pump; adjust metabolic leak and N_2 makeup.
- 7. Turn off N_2 purge switch,
- 8. Turn on N_2H_4 feed.

D. Calibration

- 1. F3 O₂ Analyzer
 - a. Open cal vent valve.
 - b. Set cal vent 3-way valve in vent position.
 - c. Set cal loop 3-way valve in cal position.
 - d. Set O_2/N_2 3-way valve in N_2 position.
 - e. Adjust flow through cal loop flowmeter to ~50 cc/min.
 - f. Allow ~10 to 15 minutes for purging of F3; then adjust F3 zero knob to read 0 percent.
 - g. Set O_2/N_2 3-way valve in O_2 position.
 - h. Allow ~10 to 15 minutes for purging of F3; then adjust F3 span knob to read 100 percent.
 - i. Return 3-way valves to normal cal loop positions:
 - (1) Cal loop 3-way valve in loop position
 - (2) Cal vent 3-way valve in loop position
 - (3) O_2/N_2 3-way valve in N_2 position.
- 2. PO₂ Control Sensor and Data Sensor
 - a. Turn off N_2H_4 feed switch.
 - b. Turn on sensor bypass valve and turn off sensor loop valves.
 - c. Disconnect sensor cables and remove sensors from canister, then reconnect sensor cables.

- d. Turn control amplifier to zero position and adjust zero reading; turn to 250 mm position and set calibration to give meter reading of 118 mm. Repeat same procedure for data sensor; also check that PO₂ recorder reads correctly (the zero can be adjusted on the recorder).
- e. Replace sensors in canister; turn on sensor valves and turn off bypass valve.
- f. Turn on N_2H_4 feed switch.
- g. If sensor is reading above 154 mm, note reading and turn calibration knob below 154 mm, then back to reading noted.

3. PO₂ Safety sensor

- a. Turn on safety override switch.
- b. Turn on sensor bypass valve and turn off sensor loop valves.
- c. Remove sensor from canister.
- d. Turn amplifier to zero position and adjust zero reading; turn to 1,000-mm scale and set reading with calibration knob to 160 mm.
- e. Replace sensor in canister; turn on sensor loop valves and close bypass valve.
- f. Turn off safety override switch.

E. Current Adjustment

- 1. Adjust low current as follows:
 - a. Switch on manual low current.
 - b. Comect voltmeter to module current readout.
 - c. Put module current-selector switch on "A" and adjust "low A" potentiometer on Electronics Card 1 to read ~11.2 mV.
 - d. Switch to "B" and adjust "low B" potentiometer on Card 1 to read ~11.2 mV.
- 2. Adjust high current as follows:
 - a. Switch to high current on the electrolysis module.
 - b. Turn current-selector switch to "A" and adjust "A high" potentiometer on Electronics Card 1 to ~33.8 mV.
 - c. Switch to "B" and repeat.

F. Filling H_2O and N_2H_4 Tanks

- 1. Fill H₂C tank as follows:
 - a. Turn off H_2O feed switch.
 - b. Close off tank pressurization valve to isolate $\rm H_2O$ tank from $\rm N_2$ supply.
 - c. Open H_2^{O} vent valve to depressurize H_2^{O} tank.
 - d. Drain $\rm H_2O$ tank through $\rm H_2O$ fill line and measure volume of $\rm H_2O$.
 - e. Connect H_2O fill bottle to H_2O fill line.
 - f. Open H₂O fill valve.
 - g. Pump in measured amount of distilled ${\rm H_2O.}$
 - h. Close H₂O fill valve.
 - i. Close H₂O vent valve.
 - j. Open tank ressurization valve to pressurize H₂O tank.
 - k. Turn on H₂O feed switch.
- 2. Fill N_2H_4 tank as follows:
 - a. Turn off N_2H_4 feed switch.
 - b. Open $\rm N_2H_4$ vent valve to depressurize $\rm N_2H_4$ tank. Keep $\rm N_2$ purge flowing over $\rm N_2H_4$ tank.
 - c. Drain N_2H_4 from N_2H_4 tank through N_2H_4 iill line, and measure volume.
 - d. Connect N_2H_4 fill bottle to N_2H_4 fill line.
 - e. Coen N_2H_4 fill valve.
 - f. Pump in measured volume of N_2H_4 , but <u>do not pump in air</u>. Measure remaining N_2H_4 in fill bottle to determine amount of N_2H_4 introduced into tank.
 - g. Close N₂H₄ fill valve.
 - h. Siose vent valve to pressurize N_2H_4 tank.
 - i. Turn on $N_2^{H_4}$ feed switch.

Appendix C BREADBOARD SYSTEM TEST DATA LOGS

一般 からなる ないない

- 1							-	1					-1	-			i :		1	-	*		:	!	!	*	and the same of th		:			
A6.N H														a, m 9.23								code	•				-	-	-		•	
CAS ADDLY			(8.8)	(9.4)	(1.11)	•	- - - -		-			:	- · · ·	00.11.00	((, ,)		:	(9.3m	100	·- 🐳		comment the				; :	L _	•			-•	
110				200	17.4 ME	13		2 %	1		:			200 m	1	: : :	-	45%	1100/2		- 1	7.4			<u> </u>	: 				·		
953	4 J	30	1	3766	3		3	1	1	325	30.	9	₹ **	<u>@</u>	2	1	()	1700 140	60	2	140	3	75		155		4	3 (270	- 3-		
	٦ ٧	1680	2002	28	057	/350	1240	770	12.0	22	2	2170 1290	2180 1339	6	7.4	1280	00212012	1700	3	1700	1100	78	100	· ·	1,00	-	2	3 2	3.0	3		•
AVIE	META	907	380	23.00	35	ł.	<u>ام</u> ر	2230	2×20	2	2	3		1	<u>ئد</u>	2180	22	00.	8	2180	2/2	& ~	2/2	_ _	7	•••	4	4-		2	:	•
3	CKANT N . KA	573	575	57	رة الأ	1.05.		. Isa	2,60	\$\$0	2	2	0			28,	8	1	1	1	0	0;	0	:	1/2/		No.	2 1	2/	 ;		·
FLO		6	-	'n	1	1	_:	ام	-+		۵			٠.		-	Ð	٠.	i					!	; 1	: 	Ľ_	<u> </u>			 -	-
	KCE.	9	6.56	5.4). P	<u>۲</u> ۲	رج 0	13	3	ر. 0	7	5.0	4.4	3.0	4	3.7	4	4	4	40	40	3	ر د	: - : -	4	-	, A					-
COCLANT	TEMF ('F)	کع	5.5	49	53	20	6	50	7	દ્	8	43	4-	0	4	47	80	5.2	4	55	5,	5	5.5				9 0			i	•	
	NIH	ė	7.9	6,0	9	0.0	30.	۶.۶	5.5	8,9	b ,	S	5.9	5	5.9	5.9	8.0	6,0	9.00	6.5	5.5	5.95	0	-	. 14	7	2 0			-		· ·
(5184)	LAL	122	7.2.2	2.0	2	2.1	2.1	7-7	7	7	~		7				7		2				7			3	5.0	<u>،</u> د	<u>'.</u>	<u> </u>	· -	
i	104	135	/3	150	<u> </u>	<u>!</u>	4	2/3	33	স্থ	7,	ŝ	469		ئے		.S.		<u>~</u> ;			$\stackrel{\sim}{}$	1			3		=-	4.	<u>د.</u>		7
PPESSUKE	PI	5.0	4	5.0	7	4.7		4.7	4.2	4,	77	7	4	4	,C	4 4	4	0.40	4	40	7 0	240	7				ÉŠ	, ,	4	}		
8	WCO	1 4		34	+	76	27	2	23	7		7	32	4	33	3.5	33.5	320	3.55. 9	7	(7)	1 335	734.0	+		2	}	12.	<u></u>	1	. .	-
1	WOLTS AMPS VOLTS AMPS	2	2 6.0	5172	55	3:57			_		5.2	_	:	:			6.9	0,0	4)	5	S S	5	3		1	C	5	<i>y</i> .		3	<u>ا و</u> م <u>م</u>	-
Z	3 401	28.5	28.5	517	27.6	28.5	7	اما	0	ō	13 0 2x.C	,0			Ŋ	٥/	28.5		AB. S.	28.5	27.3	28.6	27.6	-				5.87.0.07	<u>o-</u>	<u>, '</u>	377	1
POWER	HIGH LIS AMP	_			_	_	2.12			4 22.0	7 13			5	Œ		\$ \$	_							200	4	ð		45/19.9	E.		
	מסרו				- 8		25.C		24.7	28.8	6.20	CAR	- 24.7	28.5		28.5	8 2	\$					_		<u>.</u>	>	ننځ	28.5	2 24	3	20	
HYDROGEN	METER	2.182.2	1483.1	1495.2	1502.6	1511.5		1518,3	1521.8	15251	15.23.0	1532.5	1546,5	154.5	1564.0	1574 1	18-81	1583.1	1506.1	1588.3	1591.0	1573.4	15%. 5		SHE 100			1001	1626	44.0	a print	
PLAPSED	5	0	1~	4	7.35	8:35	9:30	38:01	11:30	12	~	+1	18.2	20.2	27.22	242	2.72	7.9.7	3000	3.2	5	36	38	2.71	THE STATE OF THE S	0 6	\ \ \ \ \ \	45	714	× 4	412 NZ	į
<u> </u>	TIME	SITP	5.00	8.05	03://	72:30	/e:3)	12:37	3:35	4.30	3	05.0	5:5	12.45	2:45	**	6.45	<i>3</i> .	10:45	12:35	2:35	4:55	6:35	}	6	9	12.23	1.50	3.4	3.45	4.95 482	, , ,
	DATE	~~	_			9-23														27.6										Ī		

Nimohup Grill, 100 Synt Jt 12. 555 ctit is 3.8 .8 52. 210/25 45 (Refill) Heotank מישון פסכר אחו * install Nith to 11.0 to 36 .8 550,718012.5 450 50, 2/10 /25 370 5.51 2170 125 370 TEMP (.F) KEH | MINTHING META | N.Z. FATE Note to 6.2 55 FLOW 42 164 2.1 59 STATUS 35 42 150 2.1 (£184) SYSTEM 285 5.8 4 4.2 5.5 23.5 4.1 TH DOW 28.6 15.7 89 28.7 2/0 28.6 21.7 20.9 24.6 1695. 5 28.6 22.5 1715.0 28.5 2.3 1665.75 25.7 23 1721.2 205 1704.5 Gecou P 1742.2 17443 1747.5 1651.8 1740.6 1632.2 1624.1 ELAPSED TIME (HRS) 9:20 53 char 77.8 7.58 51.5 TEST ND. L 20 ST 73.5 Š 09 28 4:35 0.00 12:10 12:55 X 9.35 12:37 3:05 00:9 80.00 7.8 7.41 35/ 254 4:30 9:45 יוס:עי TIME 5.45 700 DATE

C-3

			15.7	ī		` `																						REPLACE			ה א המא הא הא	!
.15	4 H 4 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A		06 M (6.4 12,	1.31 (8.00	172/11	727 195 (1.34																	10		And the rate of			2.53M			M May WIA	4
TAGE 1 ST	tri r.	4/9/5	337.		749)	727	4			52%	507	1/27	3.5%		487	2721		1	37.7	6747	457	0)			746		45%	À		24.10	45.10	+
		(471 >77	7103 2017	2 (2 2 32	7 1820 200	26/19/				198 2 05	2.01 2.18	2 64 2 18	1.71 1.57		20/ 215		77 -	6	2 . 2	716 214	12 23		•- •		PX 2 742.	572/572	1527 188				,;	
	E 6	1.61 1.65	0102 (16)	10.200.2.096	1708 2-144	(7/7)/	7.7.7		-	176 1.97	1.72.205	1.53 2.11	/(1, 17)	1	193212			B - 34	86181	193 221	155224			(June	195 ZZ19	111.22161	1/532.05/2			856 1328	165 198	
	36 36	1.43 / 648	1.960 1.864	1000	894 879	b) 1 63 1	8.0.6			XX C51	(x/ 1x)	701	1,70 / 66		75.1 76.1	9		4	37/ 107	761 76	2.04 185		The state of the s	2 kg	1 506 1 780	045 / X65	116 1878			175 1.148	724 678	
	80	142 1623	1824 1822	130	67/11/1	161 160	7) Crist (Met / Ald to B.o. 6 1/4 1 1 1 1 1 1 1		京东	1.86 1.87 1.88 2.10 1.82 2.00 1.83 1.82.193 1.88 1.36 1.97 1.98 12.05 527.	182 181	187 182	1.62/60	/2/ /2/	1.53 2.04	1	9		197 19/	1.57	172 130 21) 132 205 18 184 2.06 185 155 2.4 225 2.3, 457		of to pice new formethis	erent	13.4 2.33 246 6.248 1/874 2.025 1/96 2.1821 840 2.081 1/840 1.44 72 586.1.965 1.955 2219 2.207 2.30 497	728/915	148 1.748		{	531/97/2017	(3) 1 (5)	
U F	8.A 9.8	1.00	579.1 517.1	7.01 0.7	748 1.906	1.00 / 62	15 (Me h		162 1,46 164 173 1,40 +94 +82 +82	1.82 2.00	1.8/ 200	13/ 202	1.57 1.67	1.60 169	2.03 182	7/7	1000		1.60 163	152 205	123 205		La real	2 22 0	840 2.08/	1.8/1 7.020/	734 187A			(5)	1 6/8 / 97/	
CELLATE	TA(16)	1.748	2.008 2061	1920 6,021	1507 1997	164 1.73	1 3 C		164 173	1.88 2,10	117 210	1.57 21.3	(4117)	1.69 1.73	2/3/82	7 7 7	4.61		165 173	1.30 2 /6/	130 213	<u>ئ</u>	2 2	2	969 2.182	1717/12	18/1965	_	7. 7	1 560 120	/(t) kg	
MSDULE	SELL VOL	1.629 1.805	1813 1995	1443 15An	1.795 1820	162 166	/xix/		101 101	1.86 1.89	(3/ /2/	1.15 1.17	1.6/ 1.66	1.6/ 1.66	151 150	/	30		75/ 29/	·	7/1 (1)		unela	Z	874 2.025	148 448	14 1.7%		1.50 p.	707 1767	3	
	E 2A 3A	1.365 1821	2213 2.105	7 308 7 11.0	2.28/2.145	1.80 1.70	644 50sh	•	21.128.1	1.57	206	2.39 2.23	171 170	16/ 61	15			•	(31 16)	2.44 2.23	2 45 274	HIN'S	100	5	A.6 6.248	117717	3212/16/1	700	1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200 1914	mude	
	AMPS 1A	1771 4.4	13.6 2.033	134778	13.5.2.215	17.1 86%1	5-16 this of his 50th Areas	5 4			336 2.1223	3536 34.8 2.31	11.0 18		3497 235	Sens	_	7	10941097 136			.325)	- Anco	Intra	2 68:2 4 8	2.087.7 97.5	13.0 13.22/1982-35/2/16 11.14		Trancall	2 1 7 10 7 2	fork on aut made	
	MOD VOLTS MOD AMPS	14% 4.3	17.45 13.6	177 140	1759 13.4	11.16 1344	102 Saf	2 met	11.25 13.47	34.38 34 20 15.82 17.49 2CK	17.56 33.6	187	691 H.S.M. 16.9	138 152 1635 10 55 1 30	1645 1269 3534 3497 235	J'àmas L	A		155	165 360	11.4 363	Clust (Kas Oce	3	14.2	s .	3.0		100 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	1.97	- Park	
ļ	MODE MOD	40.5 13.8	5.30 Warm 8.06 HINS 16.0 17.45 13.6 13.6 2.033 2.213 2.105 1.813 1995 2.061 1.772 1.975 1.824 1.922 1.960 1.864 1.913 2.010 2.003 2.077 33.70	76 3/ 4 17	H1 15.81	79:2117	8	Keset G	1211 07	Hi 34.38	À,	84.9/ C. 1H			HI KYS	- \$	0	_	1.4.1	H3 167	G. 16.7	male ch	Les of	2000	5 2	5	#1 15.75 11.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/5/1/9	2 Ha on	
H ON	H'6H LOW	9.59 7.43	1 36 806	17 40 8 06	B.64 8.06	1492 8 CT	- /enk	1	15.61 9.46		. •	30 1647 986		3.30 173 1003 10		٤٠	•	4.30 18 19 15 1 116		5.20 18 60 1031	19:N 1051	1	Marie	2164 403	11.20.77 St. 11.0. 11.15	0 1 1 1 1 2	16.302356-11.10		2002 11.10	253211.10	turn I A	
TEST	DATE TIME	9-22 4.30	5:30	99.30	9:45	ok://	9.13 17 6	12:00	12.12	1	1:17	7.30	=	3:30	=	4.20	7.20	7.30		5.30	N:61 05:9	7.00	10:30	10.307.80	02.11	405.61	06:71	3	//30	2:30:2	3.00	

		200	0 \$.16																					1	REXERD OF	ì							
10	* 11C	-				(Sept (Pa)			(cc.11) 484.													Lon	!		o J	M 26./							
PAGE Z	Pot	1781 1764 1841 1725 1868 1721 1719 1819 1781 1850 1972 2005 2153 40 %	43%	7.5		ì		38%	45	200	284	76%	205	51%				215		5/2		not leaking to K On		7170		53%			54.6	1		i	7.04
		5 2 153	22262 341 1,009 1,762 1,788 1,835 (1721 1,804 1,720 1,723 1,824 (7,07 1,864 1,905 2,026,2,82	1.6151.6471.5861.6371601 1.577 1.676 163, 1.6681.68811.20 (2359)	13 (.700	32,703	31.68	1.03 1.849 1.672 1.672 1.674 1.694 1.622 1621 1630 1.600 1.687 1.650 1.675 1.679 1.634 689 30°1.	81.661	11. 1634 1684 1609 1695 1654 1673 1669 1654 1659	1.643 1.689 1.661 1.713 1.637 1.637 1.647 1.612 1.637 1.657 1.673 1.673 1.673 1.683	1457 263 1 633 1 1637 1643 1 1643 1 1643 1 653 1 1613 1653 1	1445/1623 1.666 1.717 1.640 1.702 1.650 1.614 1.700 1.660 1.634 1.666 1.676 1.688	146511.217 1.639 1.702 1.649 1.613 1.637 1.653 1.663 1.669 1.600	1641 1703 1.652 1.65 1.701 1.65 1.672 1.663 1.671 1.682	:		1.49 1.6941.6681.718 1.692 1.306 1.659 1.613 1.661 1.676 1.671 1.636 1.68		1.081.705 1.602 1.674 1.677 1.617 1.615		4	> -	1866 2 cm 1949 1986 1857 1877 1974 1.895 1911 1949 1955 1988		82105	42.128	6 164 1659 1.87 1.32 1.763	45120		2245 2422 2000 1847 1.871 1.836 1.925 1.804 1.304 1.807 1.806 1.349 1883 1347 2057 2134 2238		1202 1204 136]
	2 Z	22.20	202 205	80 - S	72 168	3 <u>5</u>	71/68	69/62	63 1.67	19/183	(1/6)	69 1.6.	(1) (1)	27 / 12	17.63			17/10		1) [(0)		9		44 1.95		199 703	14 2.05	27 1.75	N 206		57 2.13		2 201
	3.	850 1.9	84 13	97897	97 999	971 259	97 699	675 16	673 16	21 16	673/6	6741.6	27/10	7/63	671/16			9.1.769	7	27/16		7		61 116	: - 	6/ 126	92720	87 65	31320	:	24720	18°S	3
	- Su	1 18(-1	1/8/	1631	1,689.	\ £	1.641	1650	1653)	1.654 1	1.657	1.657	10971	1.63)	1.637			1001	+ + •	1119/		if De prop solenors		1.898-1		1874	1898	144/	1772 1866 1784 1780 1921 18:4 1.913 2005 2060		1883	1.744 1.863 1.693 1.574 1.607 1.575 1.615 1.561 1.586 1.568 1.484 1.656 1.617 1.665	-
	. 3	618	1624	1.676	1679	100%	1.683	1.687	1633	1695	1.637	1.697	1,700	23/	/s/			1383	- 6 3	1.76		8		1.974		132	1.932	1893 1581 1603 (519 1604 1558 (57) 1541(412 1656 164	1921		\$	9591	
	86	P1.7.1	2221	1.87	8	8 8.77	<u>6</u> 82379	1600	3/608	1609	1.57	1.614	7.6.7	1.613	1.6.5			11.617	7	37.08		A		1837		& (1.789	41412	1 78°		7 1.806	847.0	-
	3.8	5/12	47.72	37 160	2783	29759	701.62	581.63	164	4 3 4	37/164	19/Ze	59/70	697 Ro	3 /65	0		3.	400	1.705 1.655	-	3		18.54		5 1813	688/ 6	1.56	36.1.70	7	200	36 (.56	_
<u></u>	A THE	13./ 57	721 (8	0,0	50	3.	91/19	25/16	301.65	361	37 78	639 1.7	640 1.7	39 1.7	64/170	254 4 160	9)/ 7	31 1.70	0	1.641		4		86/ 66	_	35 190	887 26	1258 (57)	172 1.86	3	304 1.3	56/ 1.51	
SMLVIS	7A 9	- 128 - 1	200	1.75	672 16	678	7/485	289	3.1 401.	7116	7/3 //6	717 11	11/11	717/6	1 611.1 8	25	Set &	3/18/1	7 + + s	1.718 1.		Check		P. 100		<u>~</u> 906	913/17	₹	1.1	<u>ः</u> -१	37 526	615	- !
15	VOLTAGE	.754	1.738	1.61ST	1628	163	1.638/1	1647	1883	6591		1.623.	1.666 1	1,45	1668/	-5		1.627	Ğ	1.670		4		2 788)		1822	1.428	1814	1.83.1 1.80s 1.881	current up in	1.836	1878	-:
MODUI E	1A 2A 3A 4A 5A 4A	126	ğ	1.64	1654	1997	691/1297/1297/1602/1848/1693	167	1697 1851 1709 1.41 1.683 1.655	1,642,688 169	(69)	1.647 1.631	27/	104 160	1634 1852 1.712 1.641 1.657 1.66	//8 %		3697	B	1,700	\$	3		726 7981		1854	1.846	1.603	10 X	3	1781	1.63	
MOD	CELL 14A	1907 1764	21.762	9 1608	د 1913	81.629	51.627	7 (53	49,1	8 1.64		8 1.647	1645		1.647) 					8	Z				1836	4 1.832	3 1584	1,3521.810	<u>3</u>	0 1847	31.574	
	3.4	1901	8	89°10E	27/28	2.7	02.1/87	02-16+	1.70	102.	5 1.70K	1.851 1.708	1.70	1.70	11.178	0		51.15	++5	cu.1 3		2		620				18 18	25.1.35	200	22 200	3/168	
	A 2/	2.198 4.319	27977	1-12 1.330 1.696 1605 1.64	37 96	8	89/8	63 [8	8126	801 1851 1861	1.63 1.85		1688 1.852 1.70)	445 /677 /183 1.704	81/18	Date	+	/Lu /un	5.5 5	1.617 1.156	\$	man		1.97 232 204	-	20732366	2.102 2.3	1738 1848	2,139 2.375	こののか	45.24	18.	<u> </u>
				4.5	4.5 16	15, 12	45/16	4.5	4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	<i>y</i>	45,	45 1		1.45	44 /	-5				\geq		796				13.3 24		4.5					_
	MOC AMPS	13.0 13.2	1301						3.	サイナ					4.4	ં		2.7	4	hih.	10		-	132 12.4 11.7						135 135		4.4	-
	MODE MOD VOLTS	15.31 1684	15,19 [686 13.0 13,1	3.34 14.89 45	13.44 14.99 45	34 45	13.40 4.95 4.5	351 14.9745	1357 ISD2 45	262 1350 150245	אסצו	13.61 15.03	1361 15.03 44	4.4 CGH 85.81	15.02	Sensons		505	544 che	1505	solly	6	Adres	28.2		15,017.34 13.2	1567 17.40 13.2	14.67 4.5	1545 17,18,12.0		15.30 1764	15 1322 1475 4.4	
	A 400	15.3	25.5	33				5.35	\$ 1357	1356	13.53	13.61	13.61	3.56	5 13.62	Š		5/36	4	5/32	Ş	7	•	583		1751	156	13.13	154		6.51	13/13/20	-
	LOW MOD	0 24.	0	,07, %			20 285	56 285	300	202 12	87 hz	23 23	53 23	28,7	24 638	7		¥97 26	9		20	e m		10.		#	H 25	.02 28	15 1	Ŧ	46 AT	<u>3</u>	1
I D V	HIGH LOW TIMER	26.40 11.10 2AP	7.5 3/11.	6.14	21 77'8	28.14 13.27	2814 14.26	28.14 15.26	3.	9.4 17	8.14 18	1:30 23.14 19.25	2.30 27.430.13	3:30 20.14 21.23	4:30 2814 2224 LASS 13.62 15.02			1.14 23.	6: 20	6:30 2834 243)	\mathfrak{I}	3	266	19:15 11:82	-	PS 24	9.3529	5.48 30.	1.2000.		1.60 30	256 30	_
	TIME	3.37 20	4.31 27.53 11.10	5:30 26.14 1136	6,30 28.14 12 26	3.32	<u>20</u>	9.31 3		11:32-28.4 17.27	12:30 28.14 18 24	1:30 2	2.30 2	3:30 2	7:302	5:30		537 28.14 23.34 L8 5/13.63 15.05 4.4 445	ŧ	6:30	7:15	7:30	340	11:00 2	11:15	12:55 29.10	2.302	3:38 30.48 30.02	4.35-31.2020.15	5:15	5.30 31.60 30.46	0708 95CE 1E:9	1567
TEST	DATE	623		- 1							9.14																W C						

					3 . H									1														^					
m	* 7 2 2		1.834 (7X)	Z.534 (0.44)	2.34~(10:20)		-					· •		245 fraint			•				 2		:		•	; ;		1734 (44)		1	1.85 M (8.00)		1 2 4
FASE	VOLTAGE A LA TA WA LIP ZP ZE ZE ZE 41 SE ZE F		54.6	4.6	3270	4.0	5793	2//				6/16		244	5	i	57	1	31	\$\$	5	55	53	5,4	45	5,6	32	7.95	7.55	7.62	4	6:30 46.94 37.13 HP 16.84 1853 (27 137 2 393 2.515 2044 1.856 2.155 1.894 1.951 1.867 1.807 1.807 1.807 1.90 1.908	*
			2222	72237	₹	21.75	82.2	2334	1	1.753		2.265	7264	1.71	2.30		2.3%	•	174	1421	2.4cg	7.271	1765	142	1.815	2,427	1.762	(3)	232	TO TO	1774	198	1
	8.		2/23	2130	74	2,161	2260	7.201	11717	1. 1672, 1632, 1704, 1737, 1753	-	147	2.148	1,738	1.235		2305		1.743	235	230	C.13	*	138	1.785	2.368	(大	2302	2.318	621:	E	88	
	(g)		200	1502	1.02	2002	2130	2105	1.702	1304		2.045	200	11.71	2.1%	;	ונות		1.70	7.201	2/13	2059	1,707	3/17	F	102	111	(A)	212	1.703	11717	2122)
	4.		5 %	1527	1.509	1925	1.963	1.948	1671	-, 1.632		1242	132	167	122	:	8007		1.678	1.93	7657	184	677	1973	1.8	(65)	25	8	%	1.68	1.67	36	
	1111 1111		187	1878	E	£	91870	723	1634	1/11		1884	1,473	75	(2)	:	1.32	:	1.632	(53)	1.33	1926	7291	ess	2/8	1.617	1647	\$	788)7	162	1635	3/6/1	:
	31: (1)		7	8	153.	.99	1.93	1.33	657	. ,		135	1.947	(667	1.95	. 	897		1.65	1999	1.930	1.984	1665	1835	695.	1.87	1695	281	Ž.	1562	1679	1.978 Zano))
	0€i		28	217	1763	31769	1.0.2	122	/50			1.51	1.53	35/	08.7°		. /. 56.1	:	125/	75.7	1/1	2 / 133	1.589	182	1.84	1.85	1285	183	. (.83)	+ 1.565	1.574	2.3 2.3	: !
	nu.		180	717	12/2	1 (76)	3.80	1870	/57			33.	1.8	(1,5%)	[/s/]		1342	-	7.7.58	1,182/	4.70	787	3 1.58	18	182/	128/€	166	Ų Š	9.14	6,1.57	<u> </u>	78.7	5
. 1			2	7187	25.	¥.	2020	20)	1.6%			8207	707	/63	202		(121)		37.2	NOZ!	42.08	5.09	7.64	Cast	25.5	4 2.06	7/182	(8)	1206	01.65	}. ?:	728	; ;
STATUE	A A		8	21.7	2 -	91.78	28.1	1.1.42	3/57/			1.15	3.1.13	£,	5/1.83	+	5.18S		4.15)	(12)	4 1.19	2 / 54	1.157	(2)	28/12	28/2	1	183	2015	2 20	<u>S</u>	88	1
STA	± 1.7A		2612	1.8	8	<u>x</u>	2028	7770	7/68			203	7 2.54	(197)	6 205		7. 2.8	:	(7) 04	161.3	3.1.95	1.193	8 162	. 193,	3 194	5/145	7 163	98/9	4 1.97	6,1,62	6611	1 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
انـا	LTAC 6A		683	8	(S)	89/ ž	8	100	19/ 0		1	1 203	4,2.01	25/ 2	7 20		107 7	:	9/2	1134	8:1.93	161.	760	199	1 89	68/0	1 162	8	8	3/6	107	26.00 1.00 1.00	•
סוורו	•		188	1812	2 1.30	¥.	0 200	1,20	8/ (1	0 212	3 209	401 Z	17, 2.09	•	17 71	- 🛓	ام/ در	5 209	16.20	W7 5	7 166	# 218	2.7.0	6508	Ø. →	4 000	17.20	4 (6)	20	27.29	A 1.4
MODIL	A B IA ZA 3A 4A		2	2 180	41 30	8	<u>يم</u>	31 / 84	2			7 17.15	14./	7.60	3//	- 4	(8) K	<u>.</u>	13 / 51	\$ (-95	17 9	5 /4	2 /38	<u>بر</u> تا	25 (94	55 . 74	5 15	<u>ड</u> ड	82 18	8	<u>~</u>	4.00 2.00 2.00	
	, 3A		2 20	3	15/13/	7.	92.70	60 20	15/1/2			, 203	11 2.03		207		12 20	- }	17	720	96 20	203	R/ 12	Z.0.	37 2.00	37.7.0	7	2/20	28.20	7.	× 28	15/20	<u>.</u>
	77	-	2824	37 24	\$ 2.4	4924	7 22	24 2.4	6/		1	246	7.2.4		57 X		30,2.5		2.1.3	7 6	4.6 23	47.14	35/	15212	\$ 2.5	15/25	6	Sign	37.25	800	81 248	33 2.5	į T
	2		4 22	£23	623	523	8 24	.1 23	7/12	<u>ب</u>	4	5 2.2		4	25 23		7.23	Ó	5.1.5	7	3.33	4 22	4 24	4.24	8 24	7.20	-	18 / A / A	× 23	t	4 23	472	-
	DC AM		5 13	6	<u>e</u>	5	F.1 13	.0.	3	3,		3 (3.3	5/4	\$	7 13	+	2 14	617	7	3	3 13	4	4 3	5 13	0 3,	٠	١	5	ار ارتا	Z.	<u>a.</u>	13,	
	: ~ I i	81	Ē	52 3	54 13	67 13	11.14	11/13	3 اه	7 30		17 13	5		5		50 14	H	P 14.	S 13	5	72 24	3 8	37.13	179	.17.13	1.	E1 76	25	8	38.3	25/20	<u>}</u>
	30 VOL	3		27 17	7	12/12	52 139	51 17	21 15	\$ 15		(1)	11 65) 		1 /2	- +	11.15	8/29	S	25/17	52 18	52 %	123.	×	5 5	35	8	85 85	9114	4 K	}
	MODE MOD VOLTS MOD AMPS	515 IS	٠ -	100 P	25/19	15	36.5	7/09/	7	27.57		7, 16	S S		25. 1	-	3	<u>ر</u>	2	4	15/16	1 0	ار احرا	# X	7.6	ر ا	<u>۔</u> م	145	2	2	45	± 2 ∠ 2	1.5
4	LOW A	7:31 33.10 30.7 LBIS 15.46 148	퓌	M 250	H 121	125	4 69.	18 X	7	1.30 36.47 32.13 (375/13.10 15.04 4.3 4.35			2:30 3706 3246 5 16 5 18 3 18 3 18 3 18 3 2.411 2.030 1.835 2.047 2.018 2.647 1.836 2.049 1.827 1.831 1.931 1.942 1.855 2.080 2.148 2.24		330 3771 3270 19 15 13 13 13 13 13 15 2324 2512 2011 1547 2016 2055 1854 2014 1517 1530 1.952 1.952 1.957 2.135 2.35 2.35	- E	1 162	3.2%	7	3.53	376.6	30.5	4164	4 7	1.85	5164	5.52 2	£88±	6.33	3	8	1.13	1
2	HIGH LOW TIMER TIMER	3.03		883	4.49 3	5.23	5513	5.96.3	اــ .ــ ا	6.47 3			200		7.7	, F	13) 3	8.97 3		348 3	5:03	043.3	1013	1.543	2.56.3	3.37.3	4.203	5073	2653	KE133	E889	230	1
ک ا <u>-</u>	TIME T	6 16.		2013	383	1,673	30 19	2:30 3		1:30 3		.30	30.		30.3		1:30,3	3		3	1.304	25.4	7.30.4	0.30 4	2.304	33 4	90	33.4	1304	8	33.	1.304	
TEST NO	DATE	247		3)	9.38 3449 3121 HTS 1194 13 6 13.6 238 2.42 1968 11900 11919 11921 1.88 1.885 11.2 1.123 1.582 1471 1569 1.02 1.742 1771		=	38					7		7	\ 	7	-7); 		9			7	. ≤	7		וני	V	20	•	!"	→	
ī		<u>1</u>				(اسا	1				L			J _	1		1		·-· -1	1	1		الـ	1					1			1

		2 3	7 26	ું છે		
10	* 17 160		347	902	157	
FAGE 4	Poe Syste	Pr: 12.15 Pr:	13.86	12.4	12.5	
	48 58 48 36 26 18 1.99 (934200721382382550 2117 2013 2115 2511 3021 3.112	1650 1651 1651 1651 1651			67 1787)	
	48 36 26 18 2007 2238 2382 50 2115 2571 3,007 3.112	1665 1.0	1,619/	29	27.	
	48 342001 U 2//5	10 /69/	(1) (6)	3	(43) (64) (63) (63) (63) (63) (63) (63) (63) (63	
	28 58 1.994 (.934 2.11.2 2013	tt1		57 1121	(47) (0(7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	
		12 1.5% 1.6% 10 1.4/1 1.705	1.618	/627	707	
	1.840 7.082 1.838 1.840 7.082 1.838 1.795 2.141 1.858 1.874		1.75 /4.37	1779 1652	1315 / (4.8)	
STATES		711.1 159.1 ((6)	1,644	1641	
STA	2/3/1.889 1.964 2/3/2/1.889 1.964 2/3/2/2/3/2/1/2	1964 1-737 1-700	(171 170)	1715 1755	1.82) (73)	
pare	VOL VOL	177	1334	3,0	1.65\$ 2.00\$	
MOBU	2053 1.862 2.03 1.75 2.03 1.75 U 5 471 C	1.706 1.629 1.713 1.638	702	1/2		
	25 (2967)	1.736	1.05 1.734 1.705	5 1.723	3 (73)	
	AMPS. 13.3 2.95 13.3 2.95 15.35 3.8	(69) (300	1 // 102 / 655 1 // 103 1 // 103	10 89 (155 1.723 1		
	A A 18.3 35.4.0	40 40	60.7	10,61	3 A S	
	MOD A 15.3/	13.68	13.75 15.12 13.812 15.20	13.94 15.21	7.30 4163 437 1867 13.18 (19.6) 7.30 4163 437 1867 13.18 (19.6)	
		5187 1897	3 60 5	3		
Na	нівн 4784 4733	1:00 48 10 3856 1:30 4890 3909	2:30 4880 46:05	4:30 4115 42:00	\$ 833 \$ 833 \$ 833	
51	TIME (12:30		330	7.7		
1	9-22	[두	_ 구 :	1 = 1		

The second secon

-	Meta wet fat	1884	1, 7	9	,	•		- 1	7861		- K/0//7	14/14	737.5	1,631	620	1975	726	1777	2007		2022	2603	5002	7.45	,	3000	2007		1	2080	2099	- 21
	u_{i}	/ 7/	1	2322	2.140 CVM	W/20 Ce/w		Washing		The same of the sa														,					The same of the sa			
39.	7 - 2 - 1 (F.			I'lela m tan	4 10 PM naws = 2	6/3 22 mm met - 6/4 6/4		100	Sept.			200 tolan	1	2/20	2120x412	16, 05/2	2150	47.50	2150			05/2			9/	3			• -			
153° milis	# di		3.8 ge cone co	07.5.77	1	6050 3.3 17.3 True 6.		30 62/	20.0	15.3 86.0	i	+				12.5.240	12.5 270		225	12.5 360	- 5	3 /	7 1 7	ان	1	125 46 2140	12.5 80	NS 184		13.55	3,5 12.5 165 2	
	FLOW FALE	5436 7	professor (0.4.0		0	T	5.55.75	26.2 007	S 67% 35		7583 35	75 35	67635	00	9	6 75 3	5252 91	7.80	17 - 35)	75 35	- - f · ·	33	į	7.5.35	<u>۲</u>	7.6 6135	- +		04	1.10
2 Ki	TEMF (F) NCH MANTIN HA WETA IN E	i i	3	48 (0.0		49. 63		3.6	3	50. 25		48 5.5	48 5.3	!	47 5.3	48	48 3.8	47 3.5	42 3.4	4 35	į	47	40	47 41			18 47	46 47			w &	200
\ STAITUS	0	27.5 6.9 41	Ž,	2,0		150 20 5.75		157 2.0 5.7	7	2.0 5.8	•	170 20 5.7	168 20 5.8	166 2.0 5.7	162 20 575	58 2.0 5.75	155 2.0 5.75	154 2.0 5.70		147.2,0 5.7	~ 2.5	152, 2.0: 5.7	2.0	155 20 5.7	Cylinder		152 205.7	2.0			45 1442057	0 6 0 7
SYSTEM	T PRESSURE (PSIG)	31.0 45 14	alle sex	36.0 4.5 143	_	8	I	33 45	11 Ne 1/9	DC 275 4.5	- 1			7	295 4.5	S. 29.0 4.5		29.5 4.6	5.75 7.5	4.5	ked	S 35.5 45		35.5 45	Coch 6 (7 : 3m	35 44	34 44	उर पंगापर		= 14/3	34.5	142 5 5
±3 84 24∨DC	HER INPLI	60		28,2 190		29 4 65	MOTICE LENK	35 35	and notely will	282	a head to	200	28.5	70 7	199	28.5		285200	26.5 5.	681	ed 11,114		5 19.9	12	a.	24.7 20.1	7.6 199 285 54	24.6.20.3		7	28.5 5.8	28 14 203
W HOD VI	HYDROGEN OUTPUT METER VOL	1430 28.2	And off	1860 28.	beck on	1815	*	1800		1222	42 Co 14 Ha	200 200		29/3 245						382 916		1136	(32) 38.5	1494 28.1	126. 546	1770 24	1961	2337 24				_
ND. 2	ELAPSED TIME(HRS)	12-	No Ha		1 or Ha						ad	*				150	5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-		26	3	2			0	0	o	240		\$	
TEST	DATE TIME	10/27/2:35	3.40	00:4:00	5:27	00:3	7.00	8.00	B.50	10:00	11.20	77.40	4.6	7.76	150	8.25	10.35	12.35	2:38	大土	19.0 6.15	\$6.9	8.32	10.35	C\$:0/	10/2 17:30		6:30	28	7:20	8:40	-

r	META	1621	2/10	7156)	2/36	7.43	j.	2/5/	<i>i</i>	,	<u></u>	7	1	2167	7121	200	11.18	7 20	2.26	}	['		î [. 1	17.17	140	1	- 1
1	NI-OT LAFIN 112	C 42 4 19 19 19 19 19 19 19 19 19 19 19 19 19	2	:	S 21600/min	, , , , , ,	\$	00 2 160 cc/ma		30 2160 ce/min			(6.755 10.0 Laper	5.855)		3 2140 /	- 1	25 2150		530		- James	Dignal	tenge	Thuis (4:10PM)	Office Hivert 610th Or		Cir of no no the detected	- 283 3 H 40% C	1
į	T FLOW FASE	TEMP (F) KIH MANT NIHA WEIR NE	3,5 .7 5,8 3,5	3,3 ,7 5,0 5,5 /2,6	45 30.7 55 3.5 12.5 685	5.8	5/15	48 45 125 400		45 40 .7 7.9 3.5 125 430			o's agree of 1.	(11:40 6,0 05) (11:50		46 40 6 60 3.5 /25/13	46 40 7 56 35 125	45 38 7 1. 3.5 12.5	41. 1. 762 35 125	4.0 7 7.6 3.5 /2.5	45 57 7 33 723 483	amod they fairly of No	118 ch der	1 160 ly an	1		· (+ 24 cc est in Kin		
SKSTEM STATUS	PRESSURE (PSINE) (S)	Por CAL	35.5 45 157 2.0	28.5 4.4 160 2.0 5.60	26.5 4. 4 160 2.0 58		41	33.5 4.4 158 2.0 5.8	No +10 Les to 11.1 Des	27.5 4.4 15	7		7.455 1017 days	6,5 3 95 20, K	02 0	15/ 2.0	34 43 149 20 5-7	130 13	6184	9	(43	to the source of	6020	Cor Source		ned 2290 cc		med 870 dc		
Hed to seve	NA NA	MPS VO	282 285	48 28.5 20.5	29.5 5	adjusted Net 9 fe	24.5 20.0		Por Luche out; une A	*	ha Ha Aced on	No the feed of	N2H4 perd at	No Ha Lund and 6	BS. 457 cc 540	1047 286 20.2 24.7 5.3	1257 25.6 20.1	1455 216 5.4		1797 28.5 21.2	2011	of Marka	Calibrator the k			tank contain	1	tank contain		
TEST NO. 2	ELAPSED	1	2 (42) [243	2:35		₹2,4	\$5:2	66.5	6.95	67.0	8:50	11:00	01.11	11.26 945	6/2012:15			4:30			10:36	90://	orne			") J.	4 444	Netha		

V
2
-
Œ
STA
V
11E
7
2
$\overline{}$

TEST NO.

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN

10

PAGE

1.07 (C.F.) (Dec.) (2.34) (no.) 1:27 Koa) 4.30 53:09 48.40 H) 5 15:00 17.21 12.7 12.4 19.41 19.42 10.51 18.47 1.861 1.602 1.602 1.605 1.656 1.656 1.696 1.702 3.80 mm (6.30 53:0) 48.40 H) 5 15:00 17.21 12.7 12.9 20.9 1.951 1.952 1.956 1.975 2.104 1.864 1.867 127 2:30 52:59 47:81 4, 12 15:27 12.0 12.0 12.0 1.919 1.942 2.021 1.823 1.659 1.607 1.615 1.587 1.6431 .6241 .646 1.659 1.605 1.710 1.603 1.603 1.615 1.5841 .647 1.627 1.645 1.659 1.603 1.709 1.709 12.7 12.8 1,926 1,858 1.816 1,921 1,993 1,804 1,852 1,768 1,814 1,814 1,792 1,845 1,816 1,828 1,841 15:13 14:65 12:7 12.8 1,923 1871 1.916 1.932 2,001 1822 2A Q 3A 04A MOD VOLTS MOD AMPS TIME HIGH LOW MODE 12:55 51.76 47.03 1.30 52:1847

		•	3 M 8.4.)	2740 A		37 MLW)	•											
			2:47 (1.53 H 8.44)	104-15 ck 2740 at		5:44 (1,734 M.W.)												
	340	1:30 Sta 5091 H1 15:14 17.63 12.8 13.0 2.078 1.345 1.347 1.34 1.30 1.44 1.30 1.45 1.48 1.54 1.30 1.40 2.41 2.40 4.70	09/1	3.30 550 8 51 51 11. 15.71 17.26 12.75 13.00 2.01 1.201 1.201 2.01 1.239 1.900 1.79 1.548 1.01 1.50 1.92 1.55 1.92 1.55 1.92 1.550 1.92 1.550 1.92 1.550 1.92 1.550 1.92 1.550 1.92 1.550 1.950 1.950 1.550 1.950	304	3/14	6:30 (cost 321) Hi 1558 1761 [28 13.0 2.042 1.983 2.020 2.109 1.846 1.888 1.713 1.841 1.450 1.872 1.57) 1.840 1.967 2 002 2.043 2 087 440	7.30 614252.54 Hi 15.68 17.87 12.8 13.0 2.09 2.09 2.00711949 2.02212,099 1.83918751,78311.83511.83511.857 2.001 1.937 2.009 2.005127127188 442	8.30 61.7852.34 H 5 5.67 17.76 12.8 13,0 2,02 2,000 1,957 2,026 2,090 1,837 1,872 1,386 1,834 1,880 1,854 1,959 2,009 2,066 2,132 2,187 442	9.30 62:16,53:24 4, 5.63/1.28 13.0 2.117 2,001 1954 2.013/2,052 1,836 1,874 1,791 (839 1,888 1,849 2,01) 1972 2.023/1,741 1,773 1,809 2.85	10:30 62; 64 4 13.46 17.89 12, 8 13.0 12.065 1.912 1.967 2.023 2.040 1.857 1.855 1.769 1.843 1.994 1.908 2013 2.055 2.11 2.152 4.60	11.30 63:16.53.84.51.51.51.51.51.51.63 1986 1995 2.043 2.051 1817 1817 1.817 1	12,30,63,69,540 LO 13.08 15.21 12.8 13.0 1.764 169/166 1.652 1637 1594 1581 1545 1581 1619 1675 1605 1.226 1.752 1.785 1.80	460	260	450		
	4 135 1507 43 44 1.20 1.20 1.60 1.20/ CCS 1.64/1.56 1.64 1.60 1.68 1.67/1.60 1.20/1.20 1.89	2109	2.1/2	2,135	2.17	2.15	2.087	2.788	2,187	1.809	25/2	2,208	6/8/	1:30 6415 54:30 H. 15.56 18.11 12.8 113.0 2.112 1985 1.997 2040 1807 1.832 1.767 1.8161.8691.834 1.982 1.91 2.054 21.0 22.04	2:3064:59 54 74 1/2 15.30 17.98 12.8 13.0 2.091 1.961 1.966 1.983 1.556 1.590 1.508 1.579 1.655 1.655 1.657 1.753 1.797 1.036	/833		
	1.72	200)	2.02	7.037	7.0%	12.6%	2,043	12.127	2,/32	1,273	11/2	hur2	1.785	2209	133	1.797		
	0//K	5 2.00]	12.0%	7.632	3 2.633	103	7 مع ٦	3/0/2/6	12066	3/1,244	356218	12099	61752	42110	5/72	152.1		
	4 1.030	7/1/	1.92	11.97	4675	646 1 1	1.96	92.00	92,00	2.02	3 2013	707	1,72	205	21.72	16.1.3		
2/2	1.67	1.54	7 1.30	33.7	1 / 15	7.55	₩677	1.85	5611	1972	761	2797	2//66	1661	57/ 5	2 /. 65	q	-
1/36	7.68	2/13	51.97	01.7	17 1.38	9 /. 98	1717	4 2.00	4 1984	1201	3 1999	86/ 2	1/67	4 198.	39//8	9.12	1 on //ne > # 4:20	-
188	2 1.60	2 1.55	1.54	23.77	0 1.89	W.1 0	0 1.79	182	0 185	8 1,84	78/	184	4158	:9/63	7.55	851/50	+	_
387	1.61	23.70	7.1.7	17.10	(3// 7	11.17	1.53	5/.88	141.88	9/188	1.87	7816	/9///8	1817	29/60	36 1.60	<u> </u>	
2/53	6 /62	74.7	23.10	1.59	13.18	1.64	3 / 2	13/1.83	16 183	1/ 1/83	281.6	1814	351/5	1816	3/8	71.58	////	_
03.	14/.58	03:[h	8.18	1.7	1.1	11/11	17.17	151.78	12 1.78	141.79	37.75	71.76	31 1,54	321.7	25"/ 0(541.52	۶	_
17/190	5/16	2.1.9	14 1.30	39 / 9	10/18	31 17	17.11	35/8	37/8	86/18	27/18	12 /83	14/5	81 10	51/93	401.51	K	_
. Y.	39/6	41 14	7.6	11.	3/ /2	4/6	1.8	99 1.8	8) 06	8/8	8/	8/ /8	37 1.5	18	37 (5	22/.5	pose	-
1000	61 17	M 2.1	17 21	11 2.1	12/20	11 2.11	20 2.1	22 2,0	2620	1520	23 20	43 20	27/25	92 04	3.9.6	35/1.6	1	
26 14	63 // 6	48	48 20	47 2.0	2 20	57 2.0	53 2.0	19 2,6	51 2.0	54 2.1	2,2/2,0	25 20	1,6	07 66	16/199	64 1.6	ota	_
12 119	12/6	\$5 1.5	99 1.9	110	(%)	67/20	80 1.9	20719	67 000	61 800	12/19	86119	41 18	851.9	61 19	91 1.6	em.	_
61/850	100	36	25 1.9	10) 2.	05/ 2	02 60	12/10	099 2.	102 2.0	19 2,	61 5%	103 19	17 16 91	112 19	6.7 160	1.1/1/1.6	ms kano battle was emoto-	
70	4 1.	3.0 2.0	3021	30 2	302	0 2	3.0 2.	3.0.2	2,0	.5	3.0 2.	8 12	.0 1.	302	302) 0 1	+14	_
2.8	3 4	ر د د د د د د د د د د د د د د د د د د د	2.4/	,;; - - -	י בנינ	18 11	7 87	2.00	2.8 //	28 13	1,8,7	4 41	2.8 13	2.8	78.2	2.8	pa+	_
157	605	163	167 1.	1.16	1001	1.03	7.61	187	1.76 1	7.83 1.	789 1	5.26	5,21	8.///	1 36 1	800	0	_
3.711	335 /	S.W.Y	5.16 1	3111.5	11/13	57 1	5.26	5.68 17	5.67 1	5.63/	2.48	3,151,	3.08/	5,56/1	5.30	1 11/5	KAL	
<u>_</u> _	7	41";	1,11	, * , T		H, ^{[2}]/	His	H, 165	4,00	1,00	1 /12/1/	220	30	1,4	1/00/	H, 25	W	
12.30 5746 50 66 H. 15.71 1757 12.8 13.0 208 1.912 1.245 120 22 1.845 1.902 1.802 1.853 1.887 1.859 1.865 1.6		1603	11115	27.20	5/53	(3/5)	Sain	22.54	2:86:1	3.2%	13:61.7	53.83	3400 11	4:30	54.7%	55:03	1/12 ms kg	1
5746		51.03	3.65	5505	19.70	Soint	633	2/17	61.785	12:16	2.64	191.80	3.69.50	\$7.75	65.49	65.0)		
(233)		1:30	2:301	3:30	4.30	5.30	9.30	7.30	9:30	9.30	108:0	/, Yo	102.7	30 6	2.30	3.30	4.10	4.7
		3									,	3						····

4 HOURS

25 8625 8E%

D" 7.4 much Gas 61660-

108 (10:48)

15.67 (12.6) 13.0 (2051) 361, 264 2011 247 (36) 1911 1,9th (863) (

1.07

			ě	500, 100																													,
0F	NZIA	CONC. *		Max.																													
PAGE Z	EFFLIENT	Por	440mm	380		- 1		41000	i .	470	200		430		25/	456			*		470	1839 1822 1782 1840 1901 1872 2047, 20082, 050 2 103 2 265 2877, 1 2881	0/2		420	240	550	530	520	480	480		480
		9	2361 2419	77.20	22.25	3/188	3 / 765	32.09	cares	377/45	0 C 0237 5		77.77	-	2/813	3 238		-	3	-+	\$ 2.194	S 2.36	7 /822	52875	(08//8	28.226	19 2,22	88 2,303	29 2,356	112.484	1247	_	15.5351
		36 28	73 23	1.7	085 22°	23/22	110 170	243 2.0	11/2 890	17 /90	128/12		2013 2676 2157 2.MP		Kr. 1.754 1.753 1.72 1.819	15523				_	CE 2.17	103 2.2	128 17	152/179	743 1.72	1922 822 2980 2 910-	,084 2,2	2./232.2	14823	7.2022	178 24		164 6.5
		48 3	20852	1,722/1.	2005	72027	1201	2003 2,	20/3/2	20162	1.725/1		2013 2		1.75/ 1	2.0112			3	6:20 AM	2011 2	2.030.2	17371	1.7337	1,7311.	2910-	2.02	1502	20712	2.087	2,047.2		2.067 2
		5.8	1,952 1,948 2085 2173	3/18/	31.273	8/680	8 1.683	1875	7 1970	8 1382	1717 168 1.755 1.756 1.75	-	25.79	_		3 200Y	-		Les to recor	Ö	9 7.000	12008	869/ 5	39/188	1.701 1.6911.7311.743 1.781 1.807	22/19%	1371.991	1972	66772	79 61 58	1161 32		27672
,		9	202/18	1.604 1.615 1578 1.611 1.641 1.609 1.693 1.611 1.722, 741 1.771, 204	1.8601.5041.811 1.874 1.858 1.862120131.873 3.0082085 22012220	1307 EST 1503 1503 1602 1605 1607 800 1607 EST 1503 15031 F131	1.620 14.31 1.589 1.627 1.649 1.614 1.708 1.683 1.707 1.719 1.743 1.765	1633 1.583 1.621 1.643 1.8552018 1.9752019 2,043 2,093 2,109	1.8571.893 1.8061.871 1.302 1.860 20.7 1.970 20.3 2068 2,154 3.07	1.858 1.893 1.808 1.868 1.308 1.863 2016 1.384 2016 2061 21322145	1387 171	-	1657 1803 184 2019 1.90		1.580 1.717	13.2 12/68 2047 1982 2053 2098 189 188, 179 1852 188 186 12043 2007 2011 2155 203			R.	ь	2,000 2.02 2.108 344 1868 1.791 1.85 1.878 1.87/ 2.039 2.000 2.026 2.643 2.17 2.194	772 20	1601 1715 1698 1737 1752 1792 1822 210	1.589 1.622 1.599 1.698 1.6551.733 1.152 1.795 1.825	1.7	2,1332,164,1854,16951,807,18741,8971,861 2,022,197.	15,9818.20 12,9 13,4 2009 2009 2027 2,142 2,172 1,8691.912 1,8081,889 1,908 1,873 2,037 1,991 2,027 2,084 2,219,2325	15.84 18.21 12.8 13.2 2091, 98(2,0192,1252,1551,842,1881,17841,8561,8301,9801,1981,1912,20542,123,2,285,2,303	159018.412.8 13.2 2,109 2,012 2,013 2,1133 2,146 1,8471,8801,787 1,864,1890 1,358 2027 1,999 2,071 2,148 2,329 2,356	4182118471758183118601832119851862208720224312484	15,75,18,28,12.8 13.02,105/1,798,2,019,2,073,2,116,1,820,1846,1,747,1,817,1,833,1,817,1,929,1911, 2,047,2178,2411 2,472		1827 1851 1768 1833 1872 1838 1992 1975 2:067 2:164 2:315 7 354
HRLY		88 78	1733 1.782 1.843 1.802	1.64/ /4	37 9887	1/2591	116497	1.643 /.	1,802/1	1306/	16%		183		1631 /	1.5%			les ex	200	1898 1	1901	1,628	1,622 1.	1.622 1,576 1,016 1,640 1,611	7681	18061	7888/	1890	1.8601	1,833 1,		1878/
ıΩ		98	2 / 782	1/9/6	7281	3 1632	12976	3 1.621	2/87/	89878	3 1.605 1.600		(37)		2//60	1837				Ships	1 1850	5/19	3/580	2/.589	76 1.516	78.1879	8/.897	358748	7 1.864	18/831	1816		8 /833
STATUS		7A 8A	173	12/22	841.81	43 159	95/ /6	33 1.58	393 /80	393 (.80	1.60 1.53	-	1.830 1804	_	154/545/600/631	52 179	-		o wrthe	0.7	868 1.79	42 1.78	16281.5741574153315801628	2576857887789718977	51 229	81/563	912 1.80	881 1.78	8801.78	847175	846 1,74	+	7///58
STI	TAGE	7 A9	1667 1667	104	1,8601.	97 (19)	1,620 4	1620 16	1.857	1,858/	1601 /	2747	-		154 1	1 4.87		Ţ	6470	new = 1.0	144	183	1.5741	/ 885 /	/ 9/9/	18541	1.869/	1.8431	1.847/	1951	1,8201.		1811
MODULE	VDC	-		202/12			1 1,706					2.094	<u> </u>	3 2033		3 2098		,	- oui	A.L.	J 2.108	32091	9797	1591163	19 1.720	32.164	22,02	551.55	13 2.146	172,126	32,116	35° F	1.984 2012 2.094 2.115
MOD	CELL	3A 6 4A 6 05A	2/200	73 169	8320A	38180	89/ US	14 1.67	87 Zas	9/ 207	1463 1444	1923 2.00	2115 cros C181	1910 2003 2023	1669 1653 1633	182 205	-	in her	96560	with 65% file	000 2.0l	1.996 2.00 2.091	1,667 1,639		685 1.69	6/1 2.13	41.5 7.50	2/2610	033 2,13	209 1.0	10,2 810,	3,5	602 210
		ZA (3	18/	201, 189, 1673, 1891, 627.1	130 207/2001 1983/2018 2140	967.1 (284/872/1271) 125.1	201. 1881 1621 FICT COPT.	205.1578, 4576, 1672, 1787.1	130 2067 2001 1.987 205 2118	20 7 2009 1391 2074 2121	1/11/1			200 /19	1 ciri	17/2/02		hold ,	200 De 19656	3	2.00k 2	2015	_	19701.706 1.673	13,2 1.7601.907 1.685 1.699 1.720 16/1	5.93 1819 12.8 13, 2 2.057 2.004 2.011	2.009 2	1.9862	2 210'2	5.76.184.2.8 13.1 2,1241.99/2009 2,08/2,1	1.798 2	4	7 1861
L		ď	2117	1.750	102	1.36		1.737	7267	202			132 20r 2.614	2/69	CIET ILLE F.	17/1		do	4	760 >	2079	2/01	1.7721.709	1,70	2.1.760	22057	2 200	2 2079	2,109	12,124	0 2,105	Tamp	13,12089
200 200	MDD AMIX	0	18.	3 4.3		43 130	43 43	43 44			435 4.4	_		.9 13	3 43	-		7	6	7.5 \$ 1.0	129 0.2	5.	4 4.3	28 13.2		2.8 13,	2,9 13	2.8 13.	8 13	2.8 / 3.	2.8 13.	7	28 13.
ľ		BA	1826 12	15.304	8:21 34 12.8	1804		5.23 4	15.78 17.97 12.8	1788	1523/ 4		671 103/ 18:51	621 24 123	13/6 1530143	15.88 18.39 12.9	poort	135	Vesto	8	12.0	8.21 3531 ST:SL	15.33 4	13,22,15,42,12.8	8.51 55.518.5.5	1814	18,20 /	18:21	18.41	18481	18.28	hiller	871 10.81
	ATION COM	A	175 1526 1826 12.8 13.1 7.11.7 1361 1.85.1 2006 13.77	556 LOP 13.91 15.30 4.3	183	15.85 1804	13,36 15.31	62,21,56.53	B 15.78	6951	587 18257 the 1850 7	15.XC	1.30 704 SVSL H. 15 x1 1601	18:37	13/6	15.87	P.	7	3	A. fe	5.2	25.55	168 301 1533 44	13.22	4,44	\$6.5 /	14,15.98	18.5/	15.90	HAN 15.76	2(,5,75	A	1548
2	1000		PA 18	16 60	# 18	14 169		102 107		176413	67 217	H	STH	15 H13	_	306 1-19		3	-	olo N.		0.33 H.	17/70	1.06 11		Z		H Soz	287 1	30 H	1	Proper	3.79 419
NO. R	1 1777		4:30 6544 5539	6/0	6651	7.30 67.12 56.31	0.75 6529	6806 5702	10:20 68 ST 57.04	11:30 CB.12 57.76 41/4	2 69.69	-	70415	2:30 2.83 SS. ES 41, 318	-	3:30 7/50 5306	N	2	3	_	530 72225999	C:36/2 67 6033	1.30 73.34 60.61	8:30 13.73 61.06	9.30 74354.38	10:3074.59 61.78	11:30 151462.16	12,30 756462 vg HAT	1.20 74.23 62.87	2:30 7686 636	3.30 77.2163.49		4:30 77.60 63.79
EST !				5:36	6.30	7.30	8:30	8	5.0	8:11	14.65 1230 63.60 xf.n.		1.30	2:30		3;5	3.50	4.70	\$30	J.	530	6:36	7.30	830	9.30	10:3	3://	12.30	3.	2:30	3.3	3,5	4:30
7		F	10/08	٤	3		_				101				L		L					L			<u> </u>	<u></u>				_			

																						dr - 83	5:00:2							_
40	N2 H4																													
PAGE 3	EFFLOW 4T Pole	'1 '		460	467	450	430		420	153		450		255		235	430	as			260	420	430	40						
	4	381 2.432	_	64 2.579	182.354	13 7.176	35.2 68		YYSC B	072455		48 2520		11817	-	52 1.85	18.230	172.205	_		33 1878	532,50	4247	76 234	 					
	36 2R	~		221123	2 182 2	2.055 2.1	2,188 2.3		21352342 11E.52819	226524		2.300 24		17251		1.157 1.7	2.360 24	230/2.9			2,42018	2300 21	2270 24	21812	 			•	-	-
	48	12 2.05/ 2.18/		17 2.677	10 2.050	35 2.009	282.02	-	4 2/35	10 2/05		41212		1 3M		1/4/ 3	2 2/54	17 2/13			2877 65	572.45	52 2143	12 2001						1
	68 58	1935 1915		2062 20	2054 1.9	1.5 20 2.0	0.2940		2 CV 2.9	2002,030 210522652457 2455 450		20x1 2.041 2.129 2.300 2448 2520		1766 16		1.705/63	2111 2662 2154 2360 24982.80	1558 2043 2058 2153 230 2.47 2.205			3077	209420	2083 20	1998 La					-	-
	3 78	703/ 6211	_	898/ (187	2/1/10	11 1.95-5		1882/455 2 CN 2 34C	1.M3 1.K3				151.59		2/1.5%	CX1	1550			22,651	158/198	87 L854	50 /820						1
	9 B B B	1.807 1.1		1.844 1.897 1.868 2.062 2.017 2.077 2.2117.34	1.856 1577 1.993 1.855 1867 2054 1.990 2.050 182 318 359	744 1765 1199 1687 1687 1660 1601 1.87 1.67 1692 1602 1602 2009 2.055 2009 2.055 2.113 2.113	137 1.848 1.767 1.826 1.881 1.85-5 - 0462.0282.02 2.188 2.339 2.356			1631		2025 2.097 209 1343 1.53 1.786 1.824 1.591 1.55		177 1.107 1602 1657 1657 1657 1554 1554 1554 1505 1505 1506 16x 1,700 1.202 1.187 1.253		1622 1539 1.550 1.555 1.577 1.627 1.584 1.705 1.635 1.716 1.757 1.72 1.85	1862 1.79 1.835 1.900	180 151			829 1849 1782 1807 4877 1851 2079 2059 2187 242 01833 1878	1.8211	1.87 1.6	1.53/ /6					_	1
STATUS	4 8A	1.815 1732		1.84 1757	77 1.993	11 1.87	1911 34		185 26 1281	1758		3118		54 1554		\$ 1535	14 1.72	62 1.70		_	146 / 762	58 1.786	25 1.788	× .80						
STI	LTAGE	₩──┪		2097 1898 1.8	8.1958.1	1.600 1.6	1.837 1.8			155, 1929		1843 1.5		2.1 1.5		157 1.5	2	1.54 /162			1,829 /	838 18	81 6831	1300					-	-
MODULE	SA	0-		1407 78	13.1 2 142 2034 2.002 2 106 2117	1391/25	1802990		2065 2034 1.833	13.1 2 ky 2,40 2.017 2.00 2.000 1.5		57,7079		5 /(61)			207 2017 1.1	2001	6.955		13,4 2.222 2, 49 2,029 2,101 2,060 1.	90 2.072	03 2019	874576						1
MC	CELL	1.998		2.00.2	1.5200.5	1,674 1.	2.805.2		18	2.01724		2027		762 16		1.7% 1.74 / Cro / Ct3	2.42	2034 2101	10:0	ب	2.029 2.	2028 24	2032 2	1.66/1/5					_	-
	IA 2A	2861 7012		33 20%	45 2034	PIC. (29	49 2020		13,3 2.195 2093	(cy 2,040		2. MS 2.030		(21) 17		120 1.77	2.20 2051	2m 2034	due to	6.5.5	222 2,049	171 2029	77 2033	241.25				_	-	+
3309	MOD AMPS	13.0					13.3 2.	25.0	$\overline{}$	'' 1	_	13.27		4.4	133	44	13.4	133	7	NILL FO	13,4 2	43.42	13.2 2	45 1						-
Sis	A PE	18.26 12.8		18.59 13.0	1.41 12.9	13.25 15.29 4.3	15.59 18.32 13.0 13.3 2 149 2020 2.00 5 06 2031 1.9	7 +	1500/13.1	11.75 /3.0	1		20 SS	n (3	1948 123	1535 43	10 12	1.07 (64)	11.0 Sapet	rd Nr	15.92 9.32 13.2	7 130	CE1 721	1257 1964 45 45 4.75 1.661 1.58745761305 1834 .8071.531 1.850 1.820 1898 2w7 2107 2101 2270 234 410		 		-	+	
		15.58		154	15.9			30-1	5.11	5.91	۲	K,	-1		/k	13.2	15.8 1923	18:37	0	repue	15.92 6	1,5,800	31 65.21	1257 19					_	4
2	TIMER MODE	4,6 74.48	6.00 74 P	16 M	48 PH F	Sizely	KI #18275	NLH	1,20 52/5	4. C. C. C. S. S. S. S. S. S. S. S. S. S. S. S. S.	Mull ~ 6.45	16 X 19.4"	Ruh	10 12.50	7.39 82.1	9	4175 H.	- H - W15		516	Se Hi	86572,"	Back	R12 825	 				-	1
NO.	HIGH THER	5:30 78.18 64B	78.96.4A.	7.25 79.17696 18 12	8:30 79 TE 64.99 PH PE	9.30 80.526532PLO	18:30 81.27 65626 FF 18	4	12:30 8212 (4.20 92)5	31.77 67.78	MAN	2:30 8337 6	Police	83.84 6708 12. 55	4:3 05425 67.39 10 30 4		5.30 W. S. K.	£ 3£	M-W	2 03	7.30 8571 LB W P. 15.92 A.32 15.2	28.556	S8.570	Sacad		 			+	1
TEST	DATE TIME	10/29 5:30	55.7	17.25	8.3	9.30	K. 6	10x 12x0	12:3	1:30		2:30	3:10	3.30	4:3		5.30	6:30	6:2	7.16	7.34	Ø.3	231	10:33		 			-	

		Rep			1×222		1272		2233						2251				2260				2180		2200 (1					23/8		2326	
0F		7 7											78M				-	-	-											• • •			
FASE L	ANALYSIS	CABIN		- <u>1</u>	- 5	1	- 11		rae'								-	<u></u>		seff.	•	-			20 00						17.17		
	2	N - 1 O 2	lue meta	\mathbb{N}	2720cc/mm	214006/	213000/		2.130cc, min						218 %		07.75s		7'361E	Nelly Links					1405 1200	260					3.26 50 72 7410	4. 001/2 BIS	
	}-}	86 a.:	on wa	55 45	8 45	45	5 50		07 9	5 85				50/5			8.855 40		125 135	400 n	(chi) on	5 1/63	781		4	Ø	225		556	1.85		12.495 27	
	RATE	META N2	220	11.055 4.25 1655	4.2ss 16 ss	3.5- 12.545			. 3.5 /2.6	35 1235				36 125			1/16 0		13.6	back b	_	35 125	3.5 12.5		م م		35 12.5		35-125 550	3.5 12.4		3	
211	FLOW	COSTANT N2H4	11.0 55	.7 11.05	. 7 500 Y	400	7 7.555	41:	-0- 2	0-		1=10m		0 9.0	0 hit		13 g		E 612.4	mbin -	SS nuk		.5 79		1 40/4		l	Ĵ	- 2	7 7.75	36	1.5 8.0	
•	LN	TEMP (.F) KOH	high @	5.5	1 5.5		2'9	127 cy	7.8	6.3	2190	4:3		6.9		400	d the		5.5	(K + C)	1 8.0.SS		1	2	1 +0.40		48	52	7 3.5	4.3	-1	2 45	7.5
(5	CODIANT	NIH. TEM	x his	5.9 5.5	5.9 5		5.8	>>521	5.8 47	5.9 47	1 to 21	01:9 0:10	• •	2.8 4	2	4	396	× 160	58 43	· levelo	水线	58 42	5.8 42	2 78	ding	580 cc	5.8 42	64 92 6	77 85	5.6 43		515 42	100 Tu 75
STATUS	(PSIG)	CAL	7 . 2	152 1.9 5	11.9		145 1.9 3	-1.	1.9	1421.9 5		40 7	*	6.1	6.1	1 4 0	\$	くす	1.9	-\$	7	67	6.7	388	3	AV = 5	14 13	pung	67	1.8	U	97	me
SYSTEM	PRESSURE	0 PT P02	.08	4.5	5 4.5 15		4.5	2 NA	5 4.5 14	14.3	IJ=2110	16 lex sheet	ple	1 4.3 155	4.3	tro feed	Rodre flor	tweeps >	6 4.3 154	~ 1355₹	Alow +	4.5 150	145 147	to 4	1 80		45.	23000	751 54	- 4,5 160	S.	45 157	B
Vi		٤	ot 10	41	5.5 43.5		28.5 5.5 46.	77 10 10	34.5	38.5	3	,	Notty S.	27	15.5	1004	١,٢	A in day	5.2	grt tif	N'LHY.	55 32	32.5	72 FF 7	deld		58 27	+0	36	5,534	level.	3/	evel 1-21st
	POWER INPUT	AMPS VOLTS AMPS	1 on	疾	28.5		24.5	9	8.61	19.9		V2 Hyen	20 01	200	25.5	رن بن		2001/6	20.8 254	dropmo	Rectue	20.5	2.6	Bauce	ねった		385	2.5	20.5	28.5	Parater	21.0	personal
	Z	A HIGH	Į.	2535	3 7			Ha Le	28.4	28.5	Q met	/		2 % -C		× + .2	i 30 1	WALL OF HE		4) H=S	,	- 28r		MITT				582		7	28	Sipe
1	1	S) METER	N244	127	218		430	NoHa	550	774			3	20.00	18		News .		[/3		30 25	1541	52.91		doi		1617		2082	182	Bubble	2589	Blubble
ND. 3	ELAPSED	TIME (HRS)				0	Sh.		7:55	4:05	4:45			11.3	8:5	Note	7°N	MA	φ: 3 /	Note	1	21	p /				9,		æ	ä	2	22	
TEST /		DATE TIME	11-00 10:08	05:0/	am 11:30		5 \$:2/	70.7	1:55	4:05	4:45	5.58	6:0	6:13	&	820	8.8	3:5	16:00	01:01	of: //	Mis 72.00	00:2 wa	3.16	3.25	_	4.02	4.30	600	8.8	8:50	10:00	10:15
Γ	<u></u>	0	12		,	لـــا	L	<u></u>	لـــا					<u> </u>	L					<u> </u>			الم				<u></u> '	1	لــا	. 1	1		

•	T To Tru	2335		4482	•		2323	1	7388	,	:	3372	2360		!		7/40		Jan Committee of the Co	12421		2435	5442	į	,	· •		7 426	2942	z.4.	ì
5. 436.2 3.5	0 (11 N '12.	98		S C MIL		com to designed the major and major to the second to the s			20,05	**************************************		2/30	3			2/00/2			2 ch		1	,,,,	C. Min		-	,		20 cs /mir	27.85 comm		Regarde to Dir. His trans printer a desprinte dell'establica dell'indigene dell'administratione
2 (%)	Z	7 70,36 125/20 2/30	3	35 12,5 85 21556			-		35 127 35 332150 1				١		Ü	_	١.	13 06	200	9	2//2	7 27/0 0%	707/2	•		d.f. 546		5 726	+		
	3.	7/2		Q			7.66	9	7 25) der 50 mg/	140	2	در ري	7	56 77	<u>></u> اما	6	20	12.5 15	 	7	ઢ			2	· · · ·	<u>ي.</u> بر	75	30	-
	WETA N	3.6		2/12			2.5 12.4 60	35 10	35 /1		•	2.	36 /2	3.6	19	21/58	35 12	35 12		3.5	4	35 124 75	3.5 /	!	-	2 1,4,4,1		3.5 12.5	27 5 12	35 125 oak	-
	Ŧ	6/2		1							checks with 11-10	7	2.5	2 45 7 82 36 175 55		35-7-35/	l	7 35 /2,	5	3.5 /2.5	9	7 63 35 124	7 7,5 3,5 12,5 85			7		١	LE)		
245	FLOW	7		7			7	4	7.0		4	go	_	2	1	7.	1	7	1	7	٠,	7	7		V	Σ	. : 	^	6	1.7	-
	X G	4.7		4.5		0	3,5		42		20,00	43	3	45	33	3,5	W.	<i>w.</i>	feld	3.6	d S	<u>ر</u> د	3.8 7		t of	5 52.7		3.5	2,3	!-	
	CLAN	43 4.7	*	43		To 50	#3		48	540+		7	42	3 42	}	Z	4	42	noton feddle	43	25/	45	42	S	124	2.5 (2,7 m		42	4	1/1	
5 n.	COSLANT	5.9	2 2	5.7		10	5.8	_ 1	5.8	25 0	20	8.5	رم م	5.8	4	5.8	5.8	5.6	Zat Par	915.75	(-)	رم حو	5.00	4				5.75	3.5	27	-
STATI	2 6			80		1/15	00	9	7	•	1	7.7	6.1	٥./	12.1	٠. د	6.7	6'/	foed	1.9	U	8	87	70	145	200	7	39.	18	. ×	⊣ - '
		11541	145	24/	U	Ergm	24/15	4	143	8.0 55		8 </td <td></td> <td></td> <td></td> <td>7</td> <td>149</td> <td>53</td> <td>7</td> <td>89/</td> <td>10</td> <td>11.2</td> <td>, 155</td> <td>7</td> <td><u></u></td> <td>7</td> <td>2</td> <td>745</td> <td>341</td> <td>K</td> <td></td>				7	149	53	7	89/	10	11.2	, 155	7	<u></u>	7	2	745	341	K	
SYSTEM	PFESSUKE MOD PT	5 43		14,5	2/10	ર્	32,54.5	3	9 43		26/2	6 43	36 43	!!	410 Cc	E 7 7		1543	1000 112	7	16.4	~-	975	Axam	Реги	٤.	٦_	7%	46	9 44	-
•	_ <u>Ş</u>		40,	1	4	1000	7	3	29		classial	5.5 36	m	5.6 28	4	7.6 8.5	18 31	285 S.9 345	Morice	1	Sep	212 715 1365	5.5.3.3	7	/	ماهدم	3		~	ك	-
	IN PU	Saise &	5					Come		State	8				7		28.5.5.8	285	_<	28.5	•	21.72	28512.5	12/2/	- 2	_			i	9	
	AMPS T	21.8			1	Sco	28.5 21.0	Ing	8.07	200	a) dunk	21.0 286	20			8					b ub			Ž		o we	7	2 /2	215	H1	
	1	47 28.6	2		1 H.	/ववर	28	3	23:7	1	//*	C12	28.5											9/10	(٥	7	28.5			
	HYDROGEN OUTPUT METER	2847	H. (3003	haroed N	sed By	1220	164	0.339	NZHA	K 0/	6850	0787	2/80		1/41	1261	017		1700	sed	1361	7902	ed bu	- sched	40/04	and h	2133	2423	15:30	25.30
D. 3	ELAPSED TIME (HKS)	24	X		Char	Rain	28		30			32	34	36	7	38	40	1 3		44. 5	40 R	St.	28	Rais	8	Elec	Characa	50.5	52	**	× 54
TEST ND.	TIME	129	2,00	210	2:50	2,5	8,7	Sis	6.0	6،٥٤	9/:9	8:00	10:01	00:2/	Kel:	00:2	4:00	œ.9	£.	Ø: /Y	8:20	00.4	00:21	100	1.25	£\$,'	2,70	2:2	£ , \$	8	7.0
7 F	DATE	11-11																					Ĭ.				14	3.0			

		_11	1244	2410	1	- 1	. •	· !		100	، ا	3/5%	2517	27.6	25,5	25.45		2863	- 1			· .	· i			, .	ı	·F ··	1	•	•	f .	•
07	H					-	-									_		~															
FAGE 3	ANALYS: S LABIN																																
	6A5 AN	338		2/50					-	-				2/50 0/2	7 2150 C/M	21 SO CC/M	2/50 05/2	3.25,50 : 4/2				- 1	-										
	gra 8			1							24	١	1	\	1		(l								-			i 		-	• 4	_
	E E	_	$\overline{}$	7246	-					78	to 12.	37/5	12.5	5215	5/15	5'2/ 5	5/2/5	3.5 12.5					ر -	ر .		-	<u> </u> 	 		<u> </u>	<u>;</u>		_
	FLOW RATE	7. B. 7.	+	8.23	-					- 35	10	35	3.5	& 3.S	<u>w</u>	~ ∞	3,5						in ar	7 6	9	 	 	<u>.</u>		 	<u> </u>	+	_
	FLOW	1	7	0						7	0	2	ر. ح	Ĉ	7	र ८	. 2	2			ろりなり	-	7	A Z	3	¦ —		- 					
	100		?	4.57						3.2	*	3,2	3	M V	3,	ر م	3.8	3.5			2380		0	B	0			ļ	‡ ‡			► -	-
	COOLANT	EMP (F	26	25					3 6	43	0	43	43.5	43	43	7 7	42	74			> 024		teral	Heral	dein	0							-
7115		<u> </u>	1	5.0					37	8.8	7	5.6	3.0	58	5,8	5,0	5,8	5,8			マチ		75		9			 	<u> </u>			<u> </u>	
STATU		- 11	19	37					- 1	<u>``</u>	2	6.1	6.7		1.8	œ		1.8		-∪	É		//7.	8//	/			ļ		-			
E			707	5/15	chill.				ile	75177	7	44 194 1.9	t 154	19/1	160	-	7			\$ C C				-	Run	20	_	-	 	! -	-		
SYSTEM	PRESSURE	MOD PI		385 45	charles	'n			1 60	Н	meleeup		5 44	77 24		5.5 4.6	7.4.6			58	0		J	2		<u>-</u>	-	-	-	 			
•	1 1		5.2.5	5	\dashv	4			12 Ch	39	7 2 7	56 42	5.6 35	がある	7	5,5 35,5	5.5.37	15.2.3		Η.	#	•	Paz	0	602		ļ						-
	HIGH LOW	V 12	25.2	-	24/2	4			DD		\dashv		200			28.5				44	\mathcal{J}^{\sim}			-		 		ļ 	 			+	
	X T	AMP AMPX	-+	3/2	Put	130		4		20.2	tente			2/8	2,02 2,8			28.5 20.5 28.5	4	SNA	hoy												
	SIE	worts		28.0	4	Q		O		28.5	A			285	28,5	28.5		2,82	4	7	V								_				
	HYDROGEN	METER	1 227	19/0	00'8	がた が	9.8 my5	176		21 60	new	0528	6117	70 60	1.85	1413	1640	1763	8	0												1	
ND. 3	ELAPSED	<u> </u>	3	22	Neste a		~	NIH		6.01	:	-							End														
EST A	TIME			10:00		16:50	4://			/2:2/	72:21	2:00	Co.	00.9	8:00	10:00	12.50	2.00															
TE	DATE		44					3				29	64	66	89	8		九															

10.38/10 11.04 (00.		8.13/0.
7F - NLW4 * CSII *	,78H (4'17	7 7 8.
FAGE L 40 530 530 530 530 530 570 570	590 560 5/0 470 470 140 170	
2 2008 2013 0 1991 2037 2 2045 2045 2 2045 2045	2004 2136 2110 2197 2111 (1321 2212 2 2412 2233 2409 2233 2409 2233 2409	22.23.23.23.23.23.23.23.23.23.23.23.23.2
1897 1995 1934 1891 1938 1985 1915 1948 1980 1915 1942 1261 1939 1942 1944 1946	201 1.50 1.90 2010 2014 2.10 2.46 1.90 1.70 2010 2.10 2.00 1.70 2.00 2.00 2.10 2.00 1.70 2.00 2.00 2.10 2.00 2.00 2.00 2.10 2.00 2.00 2.00 2.10 2.00 2.00 2.00 2.10 2.00 2.00 2.00 2.10 2.00 2.00 2.00 2.10 2.00 2.00 2.10 2.00 2.00 2.10 2.00 2.00 2.00 2.00 2.00 2.10 2.00 2.00 2.10 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2052 27.3 2052 27.3 32.04 2.0 32.05 2.3 57.2.42 2.3 57.2.65 2.1 57.2.65 2.1 57.2.65 2.1
78 68 58 48 36 26 18 1815 1914 1857 1995 1934 1948 1999 1931 1951 1891 1998 1995 2008 2013 1933 1947 1915 1948 1990 1991 2037 1833 1831 1993 1962 2012 2015 2015 1833 1831 1993 1962 2012 2015 2015	1 2011 1.55 12 2.46 1.73 13 1.311 1.60 14 2.63 2.13 15 2.10 3 20 15	1.892 (2001 2053 2131 222 2 222 1.890 (1.704 1.7
1 5 1 1 1 1 1 1 1 1	1.812 1.865 1.904 1.81 2.01 1.552 1.915 2.017 2.017 2.014 2.18 1.812 1.855 1.893 1.855 2.406 1.959 1.752 2.033 2.110 2.19 1.820 1.850 1.850 2.406 1.950 2.000 2.000 2.105 2.40 1.811 1.851 1.851 1.850 1.857 2.40 2.000 2.000 2.105 2.40 1.811 1.851 1.850 1.850 2.40 2.60 2.105 2.40 2.40 1.750 1.80 9.1805 2.107 2.60 2.105 2.60 2.105 2.40 1.750 1.80 9.1805 1.804 1.809 1.678 1.705 1.705 1.705 2.706 2.705 1.750 1.80 9.1805 1.804 2.005 2.005 2.705 2.706 2.705 1.750 1.80 9.1805 1.806 2.005 2.005 2.705 2.706 2.705 1.750 1.80 9.1805 1.806 2.005 2.005 2.705 2.706 2.705 1.750 1.80 1.80 1.80 1.806 2.005 2.705 2.705 2.706 2.705 1.750 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.8	10 1 198 1
88 824 1824 1824 1816 1824 1818	1.87 1.87 1.85 1.85 1.894 1.81 2017 1.55 1.915 2.017 2.017 2.047 2.08 1.87 1.87 1.85 1.95 1.55 1.95 1.95 2.10 2.19 1.87 1.87 1.87 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	3.00
		1972 (803) 2063 (864) 2063 (864) 2063 (864) 2004 (806) 1972 (806) 1962 (835) 1962 (835) 1962 (835) 2095 (131) 2095 (131)
MOD (30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887) 30 (1887)		15.56 (19.1) (3.4) (2.50) (2.20) (3.91) (3.4) (6.19) (5.13) (6.19) (6.30) (6.13) (6.19) (6.30) (6.13) (6.19) (6.30) (6.13) (6.19) (6.30) (6.13) (6.19
AMFS B 1A 2A (12.90 1.995 1.916 1.13.0 2.065 1.954) 4.3 1.695 1.676 1.16 1.16 1.16 1.16 1.16 1.16 1.1	15.54 [7.15] \$3.55 \$3.51 \$2.015 \$7.014 [7.16] \$15.5 \$3.51 \$3.51 \$7.014 [7.16] \$15.5 \$3.51 \$7.014 [7.16] \$15.5 \$7.71 \$1.71 \$1.71 \$1.72 \$1.7	15.77 (8.06) 9.1 (13.4 2300 2.135) 1.5 (15.96) 1.7 (15
MOUTS MOD ANTS B A B 17.01 12.75 12.90 17.24 12.80 13.0 14.95 4.3 4.3 17.55 13.0 17.55 13.0 17.55 13.0 17.55 13.0 17.55 13.0	7 33 33 33 33 34 34 34 34 34 34 34 34 34	23 40 3 8 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
15.18 15.19 13.09 13.09		
5 T NO 3 TIME HIGH LOW MODE 10:36 9362 69.60 H1 11:35 94.26, 69.80 H1 2:05 95.10 70.47 L0 4:00 9:35 71.11 H1 5:00 58.15 71.27 H1	6:20 76:34 71:32 44; (564 1715 33.75 6:20 76:34 71:34 44; (564 1715 36.75 75:00 77:00 71:34 71:35 71:3	3.00 101.00 73.99 H1 5.00 102.13 74.00 H1 5.00 102.13 74.01 H1 7.00 103.01 74.61 H1 7.00 103.01 75.13 H1 11.00 101.01 75.13 H1 12.00 101.01 76.13 L0 2.00 108.15 76.13 L0 3.00 108.15 76.13 L0 3.00 108.15 76.13 L0 3.00 108.15 76.14 H1 3.00 108.15 76.15
17E.5T N 11-10 10:34 9 11:35 9 11:35 9 11:00 9 11:00 9	6 00:7 6 00:7	3.00.5 1.

度がある。

									(35)			(4:53 /m)	χ.																	_	(200m)	Ÿ.
*		-							2.17.4			782							-				!		-						275 M (12,00m)	KY A HOURS
ECF LIBERT	1	380	570	220	Off 12.24 2.24 330/190	2, 235 235 180 180 1960	2000/10/140	45	420	•	360	480		6/3	1	420	- 1	12: 430	400	3, 150	- 1	170	oth .	- 1	530	1 380/650	Dr/120	230/48	190/460	160/450	430	1.260 * LVE.KY
2 8 18		2.270 7.343	2.415 2.565	2.10 2.31 29W	222 230	2.35 2.35	1112 200	2540768	236/204	1820 1.8K	181018	EN87_1087	881881	254 254	1803 183	1.809134	2,403 2,53	2375 245	23/9/245	1830 185	1833 187	1827 185	1652 WAR	HL:2 915.2	2.504 200	1.54 1.54	150 18X	2.57 2.67	1810 / 77	250263		20010101
48 36	24.50 2/57	2.01/2/39	20102.28	2005 7.190		2,6		2.34232	2100 2214	(737 (20)	17351752	88518K1	EST/(57)	12602	5221 1121	1721.743	20282112	2.093 2.21	17:11 1.768	1.7334.762	1767 5261	ES (7) 6/2/	2,031 2/81	2075 7347	2,036,2282	172 178	265733	2.14/2.89	138 1380	218 222	198 219 211 VAN AND AND AND AND AND AND AND AND AND A	153157
65 58	2.047 1.952	2043 1310	2.043 1.9 X	2.049 2.00)	6.014 1.913	7.051 1.9bY	1.63% / 402	2040,2022	1887 (881	(650-1653)	7.663/652	1871/1654	669, 8281	203 (.978	1.67/ 1.65/	1.6781.447	3/6/ 7102	1,51 107	1203 1668	1674 1658	1591 3991	5597 6531	1,897 2 169,1	1364 1921	1998 1915 2 585510350,52 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,	1197 (497	2 WE 180 245 733 455 180 30 520	2.032 1.032	1615 L673	1 der 1 pt		
12 25 78 65 58	1827 1/25 1/87/ 1/85 2.047 1.951	1. Tr. 1.775	1.870 1.840	180 1155	1.60 #2x	1.823 1.872 1.831 2.031 1.937 2.085	1.800 1.846 1910 1.688 1.632 1.774 1.291 1.812	1.843/8/4	2281 948	1580,150	1621 1.57	16/8 1586	028/6387	1873 1891	1632 1602	1.6.19.1.50	1.877 1.834	1,880 1.837	1.864 1.824	8051 5551	11.408 (371	1248/8551	18391.793	1955/1853/803/24/92/2005 2347 2.51 208/82/226/	1849 1801	1.634 1.57 1.619 1.614 1.720 1.73 1.1314 1.514 38/650			1549 1.454	145- 1-641	2003 1.981	5 T&
A %	24/ /43	1.859 1.800 1.881 1.275 2.045 1.310 2.011 2.38 2.200 2.343	1. 152 1.856 1.870 1.840 2.043 1.931 2.070 2.28 2.435 2.565	1332 1334	1.577 1.579 1.541 1.600 TYZY 2.004 1.943 2.04.	(53) (187)		_	1,856 1,852 1844,846, 1822 1,997 1,942,5100 2214 1336, 2440	1367 0287 (55) (55) (55) (55) (55) (05) (55) (55)	1.5071.617	259/ 609/	1.889 (937	188 1.88.	16× 1653	4491 4191	1,879 1.917	1358 1.884 1.880 1.837 2.021 1.891 2.093 2.215 2315 2452	1.858 1879 1.864 1.824 1.203 1668 1.731 1.7168 231 4 2453	1491112 1231 1434 1408 1674 16581, 7331,762 1830 1863	0792 1121 1175 1408 1371 1665 1654 172251.7611 1833,1870	187 1529	285 HY 12 18 12 1805 1864 8 194 899 1868 1 368 1 308 1 3181			41.633 1.614 1.659	LENY 1923	1933 1.867 1554 1.837 1837 2.09212.032, 2,44) 2.86 2.587 2.67 230 /4/20	94Y 1328	05/ 1905 1905 1905 1905 1905 1905 1905 1905	861	F
VOLTAGE	1.73	1.3.7	1.316	/,7%	1,557 1,592	1374 1.00 1.831	(130 /36/ (817	_ A `	1,99/ /967	1551 1557	1670 1.613	5697 1041	2057/2/7	2080 1.93B	1747/657	1.703 1.645	2033 1.924	2018 1916	7006	7	21/ 268	1036 1494	24.87 1661	2.008 1.887	2.062 1935	1654/633	7 LW 1350	2.62) 1533		1461 602	2021 1929	וייי ליייים אוניים
1	3	2050 2146 1819	2002 2.034 21481.984	13.3 2225 205 1999 2020 2,124 1355 1890 1232 1,834 120 1155 2.049 2005	1647 1,539	2.04) 2.108	1.369 2.630	1.3642.062	2080 1,968 2013 2,000 1,992	1.8431,720166 (62 1.620 1.591	16631.707	1.682 1.780	20722157	2079 2165	1695 1857	196.1 631	2//32.189	2235 2122 2038 2034 2/62 2.018	2326 2147 2.016 2048 2.134 1871	1.512 /264	1591 1283	1621 1.5RS	1842 8461	1,988 2.110	2.022 2.124	1.617 1.735 1.65	2311 2114 267 2611 2611 CON 2 2012 2013 2013 1813 1155	2.181 2.031 2.677 2.142 2.627	1.15 1.69 / 643 1.550 1.33	2012 12, CJULT 102	20422111	12647171A)
CELL ZA (30) (4A)	2.0/7	2006	2.104 2.002	2015 1999	(170 (417	2.140 2.033	235 2018	2202 2022	2080 1,988	1,720/264	174 1699	122 (72)	2095 2067	20872049	2027 9227	1.752 1.709	2.109 2056	2.122.2038	2147 2.016	1.76/1.09	44 1.873 1.776 1698 1591 1683	1.734 1673	2.034 1.955	2.08/ 1.99%	2.117 2.0%	1.750 1.711	2.148 2.02	2.(1) 2.031	1.15 1.653	7.17 7.03	127 127	LZWXIA!
AMPS 1A		2.145	13.3 2.20	13.3 2225		13.4 2.233	7.12 232c	036, 1392 2302 2052 1384 2062 1,810	46 1/8ss	4.5 1.843	"4" 180	35.5 T.ST	3.3 2271	34 223	18,3 1.813	13.5 1.849	12 4 2.2 23 2 Mg 2056 2113 2.169 2,033 1.924 1,879 11917 1.877 1,8342.012 1976 2.0782112 2.403 2.530	135 221	برا. دور	٠ ا		4.3 (8641.7341673 1.621 1.585 1036 1494 WBT 1.529 1.5581.421 1.649 1.643 1.613 1.621 1.857	13,212,238	13.42.390	4661 (2)81/281/18202 421.24 2.02 21/13 2/182) 1937 4.81	"", ['Wa	1,62 261	135 2.m	33 1.55L	13.3 232 2.11r	4.6 13.2 2.347 2.131 201 12.21 19.29 1.89 1.80 2.00 31.881 201	14719E
VCLTS MOD	15.39 13.0	/1.34	1865 13.1	1609 1852 13.1	15.4 4.3	195/ 13.2	1940 13.5	461 0061	1187/433 46	1317 1819 4 45 1.	H, 1649 1924 44	1897 13.3	187/32	1878 313	15.47 4.2	16.70 1901 33.5 1.849 1.752 1.709 1.699 1.761 1.703 1.644 1.644 1.649 1.609 1.608 1.609 1.702 1.709 1.809 1.845	7.51196.91 85.31	1.31 13.3	16.43 18.80 13.4	7. 21 2941 81.5	11.84/463 4.6	5.4 14.4 4.21	- 1	19.14 13.2 13.4 2.390 2.081 1.994 1.988 2.110 2.008 1.8671.851	13.4	15.38 4.2	19.07 11 11 10.21 Z	1942 733	1477 4.5	1915 733		
MODE MOD	H. 162	11, 16.11	16.35		132	777/	H, 16.32		1.87		Ĭ	¥	41 453			_				8/،2/	- 1			16.33	A. 16.64 1917	1345	16.51	11: 16.64	10 124 HT	16.7	7.7	1
HIGH LOW A	5:00m10.02 77.54			8:00 (0:96 78:55 14.	19:81 18:61		11:C7 73:A	+	02 13.07 EDE 1 00.1	2.00 14:5382.04	3,00 15:04 80.26	400 15:68 80:61 #1	700 K.34 80.97 HI	6001685 Bl. D HI	200/125/18/55/20	8.00 11807.81.94 H	9:0 118:88 82.24 H,	10:00/17:05 12:05 HI	11:00 119.38:83.09	2.00 120.05 83.26	D 120.99 8360 Le	2:30/121/188402 10	3.00 12:49 24:22 71	4,00 122,2584:48 H	#L#8 £822)	7:00 /2N of \$5.32		4200 2500 85:83 Hi 1664 1942	10:0015:48 \$5:90 1	11:00 25:57 W.3- H	07 85:38 pt:32 00:21	Ti . anila.
DATE TIME H	11-11 5:00-1	1000	7:00:/	8;80 (4.00.6	10:00 DE	11:00 11	112 12:00 1	10a1	2001	3,001	1,00%	Con	100'4	100%	8.0	9.u	10:00/	11:00/1	21 00.21	/ 60./	2307	3.00	1,60%	die 5'00 1		8:0	7.08%	100:00	();(A)	200:21 EHI	7

		•	(410 "																										
0F	NZ # COLO.		,83H																										
PAGE 3	POL.	350	280	470	2/5	440	350	760	190	450	380	470	440									_	-	-	-				4
PA	1					امد	l	7	_			_		-		-	_			1	-	-	-	+-	-			 _	\dashv
	91 8	\$ 8	22 %	8)80	72.42	35 2.4	1601 2278	1,801 1,852	1818 1.869	31 29	1904 1965	2126	222.6		 	-		-	-	-+	-	+	+-	+	-	-			_!
	8 7 8	5 6	4224	8/ 78	22 23	9,2 10				38 29	12 19	09/2,5	2,5 52.5	-		-	-	-	+	+	+	+-	+-	+-	+-	-		-	-
	8 36	2 2	752	7.00	5323	(20)	% 1,723	1/8/12	1461 91	72/0	1174 2144 1.875	952.3	55 2.7					+	-	\dashv	-	+	+-	-	-	-		 -	-
	8 48	39 (6	23.00	52/7	12856	45 2.1	9/ 90	17 52	36 17	14221	12 5%	150 2.0	29 20	-		-		-	-	+		-	+	+-	-	-		 -	1
	8 58	9//85	57 72	37 K	53 88	12/19	15/16	36/16	79/10	61/39	31 1,91	1.1	11/16		-			-	-+	-	+	+	+	+	-	-		+	-
	89	0681984, 0671769, 1889/05717831791	233,31.21 7.061 210421502094 19661,309(2021 1.8894.1831/2024 1.939,20752 34242 2610	1.83 [.83] 257 (27) (1.90) (24) (60) (60) (60) (60) (60) (60) (60) (60	2332 2005 2013 2012 2114 2004 1927 1.920 2011 1.860 1.866 1.986 1.986 1.985 1.03 2.344 2524 2620	1.879 1.935 1.850 1.811 1.975 1.945 2.110 2.301 2.435 2.462	7691 7071 5171 6747	07/18/61 257/758/1940	1.412 16481.636 1.719	1821 1.788 1.964 1.942 2101 22 38 2.831 2.491	1.927 1.905 1.943 1.864 1.821 2.031	\$2.042 1954 1.941 2.007 1.871 1.811 2.001 1.950 2.095 2.309 2.25	2.0721,997 1.870 1.8981,976 1.821 1.7241.771 1.927 2.055 2.2542.5242.699				-	+	+	\dashv	+	+	+	+	-			 +	_
	8 78	27/1/2	3994 (2	35 75	3) sse	37 856				3211.7	364 1.8	371 1.6	321 //					\dashv	+	+	+	+	+	+	-	-		+	-
	82 83 83 83	1 23	37 /20	67 /e	170	135/6	1249 1439	51 02/51	1402 1.498	7/ /261	193 1,8	7/ 200	176 1.8							+	+	+	+	+	-		-	+	-
Ñ	AA P	(63) 103/403/103/103/103/	2002	1,00	2026	879 1.9	21 600/	103619	13.2 14		905 19	9412.	3981,9				-	\dashv	+	+	+	+	+-	-	ļ			-	-
STATIAS	7A 8	7 9 9 9 9 9	3799	654 /	11/28	7.885	1,436 10	07 8057	176 13	1.908/18	9271,	.7 65	1.1			-{	+		+	+	+	+	+	-	-	-		\dashv	_
ST	LTAGE	1/100	200	757	334	166			180 1476	1 500/2 1	_	6/ 240	199 1.8			 	İ	-	-	+	+	\dagger	+	+	1	-		+	4
ΙE	VOLT.	33 8	305	1) 108	7 45,	 	1637 588 1.057		_	30	124 2	382	.072 1.				-	\dashv	+	+	+	+-	+		 	 		+	-
MODULE	1 1	30 3	200/	1012	202	5260	637/5	bas/ els-1	1.4751.449	12/2	2 550	2 980	961 2					-	+	-		+	+	\dagger		-		\rightarrow	1
٤	CELL	71.10	198	124	223	2 5/0"	7 8797	1.661		2 800.	2 440'	.0622	.186				1		+	\dagger	+	\dagger	╁	\dagger				+	7
	2A (11.91 (E2) 125/186/1883/1883/1883/1824/183/175/183/183/183/183/183/183/183/183/183/183	2121	72	250	2,271 2,000 2,015 2,015 2,143 1,991	7 169	_	1.762 1.698	44 2,311 2,092 2,003 2,121 2,09	15.5/8 2,191 2,04/2,055 2,124 2,031	13,5 2,286 2,131 2,0622,086 2.3	13.5 2,4912,069 1,981 1.961			1		1	+	+			\dagger	T	-			 +	7
	₫	1837	36.36	18.00	332	2112	44 4 1.848 1697	188/1731	1895/	118.	5%8	782	1812				1	+	+	1	+	+	+	†				_	-
	X D	3 6	27 23	30	3,4	44	164	13.6	3,6	17.4	34,5	13,5 12	13.5					1	+	1	+	+	+	+-	-	-		+	-
	MOD AMPS	3	100		12. 14.	4.3	14	13.3	13,3	4.6								1		1		1	1	1				-+	7
		12.20		8	1642 18.93	15.90 15.10 4.3	1/79 143	12.04/4.74 13.3	19.48	74.47	16.88 1967 13.5	16.74 188613.5	16.31 1905 13.4							1	1		T			 		1	
	MOD VOLTS	1581 1550	6.76 1903	889	16,92	96'51	W//	40'2/	16.57 19.48	11.57 14.42	16.88	16.94	16.31					_											1
ı	MODE	97	E	E	#	ما		4	H,	۲•			Ħ,																
9	HIGH LOW TIMER TIMER	8737	87.57	87.84	8810	88.40		88.74	88.67	89.19	89.45	11:18	181,97																
ND		2,00 27,13 87.04 LO	4.00 28.15 87.57	1.00 28.59 Briat	6.80 29.07 BB10 Hi	7:00 129.68 88.40	8:00 BBG	4; @ 130:77188.74	10.00 1314 88.67	11.00 1320 89.19	12:00 172.11 89.45 H,	1.00/133,23 89.71	2.00 1338 81.97																
EST	TIME		20%	3	6:80	7:09	8 8	9,8	10:00	11.00	(Z)	. B	3						-										
M	NE	173																											

		•
	ч	-
		_
	<u></u>	
	_	2
	1	_
		C
	_	_
	h	
	STATI	
	5	1
	CYCTEM ST	
	MALUAN	
	MALUAN	
	A CYCTEM	
	A CYCTEM	
•	A CYCTEM	
	NA A AN A AN A AN A AN A AN A AN A AN	
	NA A AN A AN A AN A AN A AN A AN A AN	
	T NO 4	
	T NO 4	
•	T NO 4	
	TO THE TAXABLE TO THE	
•	T NO 4	

0.5	METER																	420				2652 A	7656		0992		5992		2618		1692	
	H 2																	m. //11				7	<u> </u>						-&		?.	-
	+			\dashv						_					a/m			575	0			-										
ANALYSIS	CABIN											- - - - -		رز/س.	01/			W	Ý				٠, ۲		٠							
11												2/10/2/		21%	4		- 4	369€	1 64		eym.	1	c/mai		Jung		c/en		mi	-	1	-
1 1	-0-1				OK			οK				97			6740 4K	•	210 (4/4)	4981-666	4200		2000	2090 64	09000		1-080		2080c/ul		20804,		12030	
H	Z				2140	_		2160				26		2624				<i>'</i>	1370.5				2		3 2						7	_
	BAB.	8	120		.,	_		7				2/30	_	- 143	-	70	75	- Web	7		285	1895	4 95		2 100		2 100	70	001 -5		5/00	
Įų.	N N	0	0	1400	3.31=	-						2117	_	6 45			5 12.5	798	79	7	125	5/12.45	5- 12.4		4 12.35		5 21 5	, C	5 12.		5 1245	\dashv
KATE	H4 META	1.4	120	Con	0	-					1	51.6	3/1/	3.6		3	56 3	-	7	1	- 35	1. 35	3		hill 3.4		3.5	7	3.		m	-
FLOW	CORANT NEHA	0	0	137	0	7					1.620	8 8.5	Ages	8	8.5	70 C	S. 6	-	7		1	78 -90	5.8~ 8L		15 1		5 28.9	1	5 -0-		5 9.34	\dashv
	KOH COM	3.8.8	80.8	7	9.0	4.74	13	-)	7		<u> </u>	3 3	7	5.4	202	9		3.3	3 .7	-	3	2		30 35	5/4 gme	7	9	3.0 .75	\dashv
-	TE.	3	,	7		. 22	1				.5% NL	3	7			+	8	1	-14		3.	3	8	th	3.		7	35/	30	13	E	\dashv
TWAYOU	TEMP (.F)	5	42) recul	·	129	5.4	1/5	reles	ہا	ې.گ	lh	ر ي	5	42.5	72 8	75	1572			14	45	44	5,93	44		43	44	42	162	45	_
	NIH.	5.9	5.9	135	1 Hu	1	40	5.9	read	8	1	5.9	11/2	5.9	5.9	Rus	5.5		228.5		5.9	5.9	5.9	13	5.9	M	5.9	$\mathcal{L}_{\mathbf{s}}$	5.9		5.9	Om
(2)(2)	CAL	-	6.7	+2		Marie	Por	6/	17	time	Cox	6.1	2 12	5	61	<u>ي</u>	6.7	3	t :		67	1.9	1.9	K	1.9		6.7	- 1	0	٥ . ٤	6.1	_
1	129	1/1	/3/	2 61	5		∂ ‡	13	3	3.24	<i>'H</i>	091	Ť	159		2000	148	*			146	154	156	Elec	156	-10	153	3	1,43	3	53	32/
PRESSURE	T d		44	= 140	. 2	547	4	4.3	-		×	4.3	3,45	43	4.3	606.	43				43	4.4	4.3	1	4.3	\$ 55	4.3	2nd	4.3	3	4.3	4
18	≥إ			2.	5e4	1	~	37	i	95/K	Cathe	36	マギ	36	-		34	1			. 32	52	33	3	135	12.	3 39	V	39	Tight of the second	37	HO
LT.	AMP (B		Nick	C 25 420		3	Kox	7	5 90	1	200	ـــبـــ	CHECKER	36	4			26 3	39.4		901		42	5 9.3	waig	-	Ē	4 9 5	¥
Z	2 VOE 3	0-	0	1244	100 /	+	~		SY'S	A	mok	0 28.5	Cathat	-		230	沒	まち			28.5	24.3		3	8	9	5.82	2	4	7		प्र
POWER	WOLTS AMPS WOLTS AMPS	28.7 20.8	28.7 21.0	~	7	Orie			1	0	8				· ·	6				-			21.5 21.8	2	\$ 21.8	med			17	0 70		9
Z		*		7	\vdash	7	Return		majeo	23	1/2	28.5	Ś	125.7				Renord				١٥	5	#	28.5	DE		DrH	5.82	2	- \$	3
HYDROGEN	METER	1463	1659	ς	Por	N. L	B		Chang	Romer	#	1866	N.	2064	2/2		21/2				4092	2935	- /3	M-H	_	20	682	mal	524		1	Ring
PIAPKFT	5	0	જ	2:15								h		و	0		Ø		72		7/	14	-5,	Read	9/	agin	17	Ramo	0.2	Jus	23	2.4
-	TIME		250	i			620	8.35	9:00	1:05	9.6	4:5	11:15	05//	2.20	2:08	3.32	\$2.7	28.8	-	2619	7.35	8:30	9:10	9;30	9:45	05:0/	12.00	7.30	3.00	4:30	3:5
-	DATE T	1-2	1	2		-	8	90	-	 	3	\$	"		18-51	20	m	3	8		20	1	000	0	9	6	0/	1/2 mag		~	4	<u>,5</u>
L	<u> </u>	11.2	L	Ц	لـــا		<u> </u>	ــــــــــــــــــــــــــــــــــــــ	L	<u> </u>		L		<u> </u>	1=	L	Ц			L		 _	<u> </u>	L		 _		ě	لـــا	لـــا		

	Ţ	Test	20													100C		1000 013	DC 170	1000	16:15	20 CC 16:30		3022 1:30	/cc 530	200 5:30		į	3				
0F	1 1		٤.	1												46			(b) Z (d)	77.77	1517	512				275			1	1/30			
PAGE > (ANALYSIS CABIN	20	09	2080		To la									- 1	300 to 9	•			ک	4		1	. 51	mi	min	- 5		725	23 / ℃			
	6A5 AN			2707		455cc/min mota	27/15					944 cu/m		043 cc/m	940 ce/m	935cc/mm		999cc/m	955cc/mi	955ce/m	950ce/mi		11 50cc (v	11 48/cc/m	_ \	1055cc/n	1285cc /min	12 31/0	S. J. S.	2763	2771	2779	184)
	B.0.8	. .	क्ष	8		\preceq		-		1							-		100	/82	99/ 4	100				100	la		(//055		1	1	12 men
	KATE META N2		2	36 124		7	001			2,15.9		2,0 5.7			20 57	7.1 5.7			2.1 5.7	2,1 5,7	2.1 5.7	2.1 5.7				2.3 6.6	2.5 7.5		1265000	33 810	3.3	3.3 //16	(m/2)
	FLOW		-+	20		espectur				8		80		6	0%	\$ in			8.	8	32	30.00				-c- 8.5 Te 2.3			11.2	190	S 215	8 20	214/10
	KCH KCH	0,10	_	46		\$5				5.2		5,3		6.5		5.6			5.8	63	5.8					00		נילי	(رد	6.7	77	0.9	
v	COOLANT TEMP/C	-#+	7 7	45	S Dungo,	4.8		samed	عزنك	05 C	Genel	9 44.5		9 435	9 44.8	50	(cir)		44	9 48		9 51	9			9 49	n rate) 8:9 0 Sed	70 (3.35)		17 8	2/1/2	36
STATUS	316)		9	135	S > 35	2055 a	1 1	Willy Cons	- 4) with		dyte	6.3 6.1	6.1	19 59	and dyed	*	6.7	1.9 5.9	1.9 5.9	6.1	mer			1.9 5.9	6-man	123	4 × 187	1.9 6.1	6,1	1.9 55	4
SYSTEM	RE	70,	43 154	43151	to the	to		N 50 4	(546	42 147	163 256	43 157	electro	43 163	43 162	4.3 160	ene 7		4.4 160	4.3 160	4.4 157	4.3 156			635	4.4 155	o Le		Mct	4.3 15	43 15	43 152	Face
λS			32 41	23 31	4, 8 De	kenso		440.	32.1	35	6 + 1	9.5-41	e 10c	25 43		9.5 46	1. (a		9.5 42	9,5 38	9.5 37	9.5 45	Mary 2		20	9.4 45	maken	1 –	men deve	18 1.19	91 37	# 34	4621
	POWER INPUT	CI JOA CAW	215 20.7	216		NEWA		sole	0	283	Q	285	Coma	28.5		5,82	990 Lc/m		28.5	28.5		28.5 9.	m 171	,	makeny	28.5	V	12	Q	7.85	1. TI	28 20grant	ADVUST
		WOLTS A	23.62		euns	to t		+	3,76	-	check			_			छ						meta		Azm]] /	meta	Orai	tyet 0		197		
	HYDROGEN		968	1184	-	_ 2	1383	2.10	5.	1	4/00	1509		1624	178	2067	I mila		2236	2307	254	2632	•		nelad	7447	7		M 2 42	11 10	0309	0 549	
ND. 4	ELAPSED	ime (nr.)	. 1	+ 42	adjut	1879,2			162	90	1	32 4		34	36+		ahin	40		4 /	44	45	Charmen		ash	464		•	7:55	503	19	54	
TEST A	DATE TIME		2.7 6:35	07:8	00:01	10:35	10.45	00///	11:10	17.30	J#://	pe:1 6-21	2.70	3.30	5:33	1.5	0,,6	9:30	9.40	10:30	1:30	2:30	2.45	3.45	4:66	4.35	455	6.50	2/10	7.50	9:30	11:30	91.7 01.21
-	<u> </u>	_11	1				<u></u>	<u>L</u> _	l	L		•	\$	L	<u>L</u>	1 _		L		<u>_</u>	Ł		L	<u></u>	L		<u>. </u>	1	L	L		k	Ä

TEST ND. 4

120 had .57mi 10 cm Stand I PAGES DF ANALYSIS CABIN 2060 c/min 20 90cc/mi 2120 cymi 20 70 Juni 20 60cc/mi 2/45 cc/min 2050cc/mi 2100 din-2100 celinia 2140 ce/m 2130 06/2 2120 54 6A5 N1-0' 2/40 88 44 A 36 125 125 6.3 -0- -0- 3.5 1245 20 12.6 12.5 35/24 36-126 8.55 36 125 40 3,5 12.4 36 11.5 3.6 125 3.6 125 * 50 F 36 125 8.3 36 12.5 8.3 36 124 83 3.6 125 3.6 12F TEMP (-F) KOH (WANT NIH 4 META NZ 42/8 3.6 36 ナシュ 28 10- 3.5 62 O I FLOW -01 **1**00 { ۵-, 6.01 320 gme œ́ NUTY 6.5 5.5 3.0 0 7 6.0 Ge h 72 8.8 6.8 5.5 J 209.1 41.5 270 HO Tank 43.5 430 **4** % 46 43.5 3 44 40 4 4 87 Prulo = 41 5.9 32 7.0 31 45 47 1.9 15.9 6,0 MOD PT POL CAL NEHA 5.9 6.0 45 /46 1.9 5.9 5.2 9,10 20 0K 143 19 5.9 STATUS 1.9 5.4 2 2 1.9 153 1.9 4.6 146 1.9 300 45 146 1.9 **√**: 6. 4.6 161 1.9 (PS16) 143 4.6 154 40 4.6 147 143 m07) > 3 15/124 283 93 36 45154 SYSTEM PRESSURE 327 4 ANT HA 4.6 10, < 132 14.5 325 45 *\$*: the sales 30 to more 57 4% 45 10236 7 went 488 28.5 18.5 WOLTS AMPS VOLTS AMPS 2020 28.3 9.3 18 18. 0281 1362 W 21.8 21.4 23.5 पु Nuthi 22.5 touk 21 282 195 13 . 8.6 21.2 28.5 20.4 28.4195 28.5 21.8 ξ 287 193 285 225 and 21.7 30.8 5,92 #2 **7:47** 3 NIH Shut 2244 0307 2051 2412 1222 1050 OUTPUT METER am 918 0721 115 J. 11cd 2587 _ 59 ELAPSED TIME (HKS) 0001 0719 0/00 1351 17 69 73 70 \$6.00 33 Siso TIME 25.00 20.00 20.00 20.00 9:30 1:30 8:36 9.30 11.30 96.1 7:34 8:00 120W 32 257 2.4 200 7:30 835 6.00 332 5.45 0. -9 431 01.6

													200	4:00.4	_	3	2:00			9776	12.80 mon		1001	1							7:2:	Clabre	Dec 2:40	3.02-1000
0F	NZHA	CONC. *												2.53m			.674				2.60		1.05								# /S#			
PAGE L	EFFUIENT	Por	1	#	009	51.0/50	480/350		1410/33	446/300		<i>3</i> 8 0	275	230	330	400	515	530	390	450	340	360		5/0	400/480	450/330	ds/24	456/250	082/0ch	380	124	265	390	286
-		1.5	9 2/24	12.12	2.20	2.26	187	82.32	0611	205	32.227	8238	47035	1000	\$2/25	1,995	23672515	- 7.4.7	1 2.043	\$ 15.514	2012 8851	810.20		72.113	1927 2 004 400	2045	2359 42	1 705 1 623 1.330 1 1.535 1 453 1 535 1 535 1 505 1	1199 1920 420	181 1.93	2003	216719	7.304	51321
	1 1	3 ZB	23 2.05	10.2 (00	35 2.14	2.7	1.51 61	er 220	1.823 1.544	42 1.94	2022	77 224	53 195	130	11 23	15,00	2/23	17 23%	1.85 1.934	12 2.36	1861 0951	192		5/1/5	1.22 1/2	25/1943	15 2.75	C 1/30	50 1.19	18/12	100	181	8.5	181
		48 35	97/ 2.6	00/ 20	1930 20272035 2141	00 Z.C	1.407 1.419	263x 20cr 2208 2.321	8 / 604 /	X24 L.S	210	230 20	87/128	9/128	12/10:	9/0/8	12650	069 21	785-1.8	1.930 2.060 2.124 2.364	8.7 928	766 17		81 128	1. For 1. Y	16,9 171, 125	009 26	37/03	131/15	47 634	20 2 1.6	800 1.B	31 L82	136 150
	ÌÌ	5.8	1935	1.505 2	13307	1.568 1.91 Z OR 2.47 2.137 2.26	9/27	1.506	hl.	1644 1753 1.729 1224 1.342 1.340	7887	1,908	1724 1	1,5897	1.9642	1752/	7.88/	1.9592060 2117	1.70 1.795	2 BS 6.7	1727	1.51		(TAD	110.1	16,91	1794 1502 1859 2009 2015 2351	1771	1773.1	/ תניז	1.577.1	1 ort.	, 45 C.	1.765
		9	1,135	755.7	11112		1.741	8451	1.741	////	3 1.373	EE61 8	41.751	6027	31.882	51.72	11/3955	72.017	1.724	1951	1.750	7 1.695		1.958	11C-1K(C1)	1.60 1.717	10511	1171	7.5	3	8	41.802	138 1789	2 1.803
		78	182 1837 1828 1893 1692 1848 1835 1835 1891 2.623 2.05 2.14	1.861 1.825 1.841 1.852 1.842 1.355 1.306 2.001 2.003 2.037 2.82	1.304 / 450	1/817 /184/	1,637 1,645	1.867/1823	1640 1.674 1.42 1.741	15) 164	1.736 1.208 1.000 1.605 1.617 1.595 1.607 1.803 1.303 1.305 1.207 1.2060 2.2003 2.207	8641,780 (746) (27) (1821 1.98) (933 2030 2071 2 246233	640 (621 1.504 1.608 1.661 1.634 1.051 1.924 1.621 1.93 1.3547035	120281612 1.5931.6031.654.1619 1.7091.6651.18031.8921 13482031	194 1. 1721,7381. Try 1.800 1. 7731.882 1.864 20172111 23512129	6051.657/637/6431.6891.6551.77 1.7521.8401.8731.541.1905	1017,855,1019,1034,1084,1044,1505,1505,205,205	1890 1857 2.007	1660 (6078 1.004 1.724	1.854 1.824 1.961	1.802 1.75 1.789 1.845 1.814 1.750 1.757 1.826	265 1.44 1.621 1.635 1.688 1.627 1.695 1.671 1.766 1.789 1.920 2.018		1834 1.857 1887 1844 1.988 1.700 1.821 1.851 1.957 2.113	25/ 1651	1677 1.64	152 1.79	162 / 62	0531 [831 (STI) YIS 1 1831 BIC.	1718 1 622 1693 1738 / (686, 180) 1.22 / 1607 / 1827	300 (30) (31) (30) (577, 100) (30) (757) 100, 120, 120, 1207.	716.1 650 1690 1692 1284 1604 170 1600 1816 1600 1816 1.876 1.978	406,1783 1.800 1.801 1.801 600, 600, 1800,	17/67
		9B 8B	3/ 64	5/ //	1547 1.3	87 C81	7/ 149/	87 1181	9/ 0/2	1773 1713 1565)	87 6	87 OSX	97 809	97 809	25.16	44316	834/19	87 2881	9) 099	1.800 1.9	11 682	7/ 5€9		857 189	1.49 (633	1.651 16				(3)	71,100	1 269	1.1760	674 [1]
ž N		8A	18787	1525/	1122/11/22/11	1.1.1	us/	1.7%	1627/1991	1773	72827	1974	77057	76657	1.738 /	1/631	16101	1 028/	1 65%	1.782	132	1291		1834	16,01	1621	1720 1792	1657 1551 1649	१६४) १६६३ (१६)	1021	1,695	<u>3</u>	1.685	1.673
STATUS		7.4	2.153			(10)	1.67	(35)	1557		5 1.617	41.780	1797 0	2/9/3	41.72	1657	7/853	7 / 862	557 1.47	61811		- 1.641		884 1869	1665	1 660	7/804			8111	2777	21.723	77.13	702
	VDLTAGE	4 6A	237 667	2.058 1.841	2.022 1.53	2017 110		2.000 1.873	m/111		69/ 00	"	797 87	29/88	_	~	` '	1884		2.039 1.849	6181 8061	1.743 1.669		887 12		2027	2.01 182	58 1.679	11.654	1729			201 90	11.178
MODULE		4A 5A		1.943 2.0	1.586 2.			^	1717	1.33) 1968	C.1800	1,804.1930	521 126	97/202	88/15	73317	1.979 2.077	1602 3361	1,73/ 1.768	1.940 2.0	61 1761	_		977 2.,	172 1.75	1.815 2.0	1926 2.	8211 8111	121 221	241 281	9.1	737 1.6	729 1.8	7.0 11.7
Σ		38	1167 5267	1,343	1.519	13 7/9/1	17691.24	1.970	3517	1.33	1,736 1.		1/ 8761 1261 5561 1202 9622	1.957 1.809 1.7481.702 1.688	2/63/2001/1931/1881/1912	1.896 1.806 1.767 1.733 1.747	2010 1.	2015	1.784	1913 1	1973	+151 521 281 (S88)		2.245 2.163 2033 1.977 2.121 1.	1.750	2.006	1251	1.765	1716 1716	7	1.862 1.842 1.785 1.744 1.866	1859 1.829 1.77.1 27.1 1.837	1,894 1.824 1.77 1.729 1.806 1	1/2821 (812:1/292) 18261 1867
		Z.A	2967 7	1.35	1 2.01)	2.002	1.304			2263 2.047	381 1081	2244 8,021 1.925	7202	1/809	32001	2/1806	2,196 2,008 2010	2.095	3 1.831	2.240 2.085	2.304 2107 1973	31.792		5 2.163	(11)	2012	200	6 /35K	(35/	(F)	2 1.842	6287	11.824	1.935
	8	Ε.	33'S 2.061	15/2/21	34 ev	33.6 2.13	C'61 -53.7	7 201	6.70 1510	9 226				12.6 1.95		-	14.7 2.19	13.9 2.196	5 [1933]		2				630 151	138 224	18 2m	37.81 Z	1108	18.J	7.9 1.86	-7		8 1.9S
	MDD AMPS		13.2 3	13.4 33.5	13.5 3			336 337	2 06.			130 120					196 14	_		13.5 13		127 6.		34.22 34.32 13.7 13.7		`		6.30 6.95		6.9			+	-
	2	9	17.60	17.79	13.04	nvi	13.95/15.98		15:50	11.25		6.2 18a	66:31 0751	13.78 1.6DG	15.23/18.13	16.18	1843	15.89 19.30	16.09	15.21 15.31	15.71 18.59	13.81 15.81		16.12 18.76	(0.2)	18.48	1806	K 9/		- 1	14.24 16.12	5.8	16.03	1404 [16.06]
	-	₹	15.31	15.57	15.78	115.71	\vdash		13.87	(S:S)						13.91	N.90		14.07	15:1					1405	15.85	1558	140	140X 1624	1419 / 6.11	4.	14.16		
4	LOW MODE	_	iH osie	23.50 Hi	Li	Ť	- 140	.171	55 60		07 14:	2 4	104 Hi	4 LB	.86 Lh.	27 92	H 28.72	H OE	07 77	14 H	155 H I	07 22		102.43 HI	02% 60	17 cs 6	78 H.	25/2	973	12/10	36.	07 96		21 65
NO.	HIGH L	TIMER TIMER	3426 93						4:41 1455	11:30 32:15 9117	4:30x:30x:30	1.30 87:55 85:56	10.8 12.0d	3.30 38.51 98:41	4.32 38.73 96.86	35.08 97.26	335/55	39.97 94.30	40.41 984	4087 99.19	10:30 41.14 99.55	1:30 42.20 100.82	3.45 42.92 10203	1307 103	18.47 02	4355 03	7.30 44.25 63.78	8:30 94.67 0925	9.30 44.50 CHISCLO	11:30 FISH 05:11	12.3045.17 07.30	1.30 46.2407.90	45.3008.56	6 37 09
ST I	- AMIL		5:40	72.62 08:7	7:30	8:30	9:30	P1:6	10:30 38:41	11:30	12:30	1.30 8	562	3.30	4.32	5:30	6.30 3	7.30	8.30	1.30	10:30	1:30	3.454	4:304307	530 4897	5.40	7:30 4	8:30 y	1.30		12.30	1.30 4	2.30 45.3018:58	3.304
TE	DATE		257								\$																			5.5		7	•	å.
			Mon								TAE S					C-	-22	2												1	760			

教養を養養すると

		10cc AT	104 4.55 A.	5:45 10cc	4:45 10ce	3701-80:5	11.30												10°C 1'X		9 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ı								1900	}	
- 0F	NZHA CONC. *					Z.75M	Z.78M												328H		1,144									2.73M		
PAGE Z	EFFLIENT POL	Ц	<u> </u>	_		240	980	240	240	220	390 /220	270/410	130/390	1684 1660 1659 1.704 1.703 1.125 1502 1 334 1.817 1.381 1992 200/370		1557 1613 1649 1.76 1.600 1.820 1.723 1.827 1.872 1.572 1.94 180 /360	055/02	1340	1200	3/15	140	490	420	21.15	2/0	380	445	430	250	310/410	40/460	06/1420
	91 87	<u> </u>	1.0c1 1.76 1.700 1.005 1.062 1.898	251 1591 1931 887 ATT 683 1731 1551 1571 1573	1676 1181 1675 1802 1767 1767 1919 1885 1433	[703 1.669 1.670 1.571 1.802 1.771 1.802 1.924 1.894 1.998	46 2.497	1921 1.967	1.894 [.932	376 1.926	2/63 2.455 2.601 2715	1.523 1.77 2.2702.13572.1802 410 2.53 270)	19741.923 2.23421582.233 2.4x 2.54 2.682	1972	_	22 / 27	185 1.942 KD	2.261 2313	1.812 1.781 1.784 1.887 1.870 2.155 2078 2.184 23722 485 2647	1.911 1.8641.8831.9691.9132236.2153 2214 23882400,2425	6212 70	2633	11 2185	W 287	1678 1.666 1.677 1.737 1.654 1.823 1.788 1.828 1.802 1.338	682 185	182/184	1860 1872 1979 1884 2.15 205 12.098 72.3 1810 1811 2.418	2581 /1	1-18.1 4		
	36 2	1820 11	1805/E	1611/18	18/9 /	(828)	2.180 2	1.74S /		1831 1876	2.455 2.	2 477 2.	24% 2	1.837 1.		1.670 1.5	1 (31) 1831		23722	23862	2008 75	2472.5	2075 2	217/2354296	81/1581	238 2	1,833 (1)	2274 20	61 7981	1267 (74)	1.064 2.120 2.136	(x) [8
	58 48	2/8/ 08/	26 1788	770 1793	167 1.797	176 1.802	Z4 2.075	81 1.YIR	78/ (.982	14 1.81		35 2.100	ST. 233	or / 134		13 1.82 Y	2637 78	VIV3 20154	78 2184	53 2214	06 2299	A 2250	75 2242	10 2171	8281 8	27 2.M8	18/6	860.2 45	3 1848	648/ 61	1.023	1.418
	68 5	7 0/87		1683	1802 1	1802 1.	2.18 2.0	1.818 1.7	1.84 1.	1813 1774	2.261 2.119	227021	2.23421	1,725/19		८४ व्यत्र।	145 1.7	2,155 2,1	2155 20	223621	2.330 2.2	23082	2.292 21	1197 2	1.823 / 7	2.229 2.1	1.822 18	2.175 20	1.850 1.8	1.725 1862 1829	1051 2007	(2) 7(5) 171
	88 78	1.721 1676 1.810 1.780 1.815 1.820 1.832	1718 1.673	722 1677	291 12	121 1.673	127 1887	SM1 814.1 788 1.818 1.784 1.818 1.745	1.686 1.735 1.678 1.814 1.781 1.802 1.825	1687 1.730 1.622	1.577/1908	1.4.7 (5.1	141.923	34 1.70)		26 1680	22/57	0/5/ 75/0	0181 1810	51811 8913	BS 1.930	1935 BB	of 1.930	1.915	37 1.694	1900	671.718	29 1.884	97 1.789	511.15	1.770 KM 2051	
. 0	98 8	p49%	1.668/1672- 1.	16071	1 7634	1.670 1.	1.857 1.	1.668 1.7			7.86C	1.89, 1.9	1864 1870 19	1.659 1.7		1649 1.7	1657	1860 15	1,784/1	1.883/	1.908.1	1.923 1.5	1.8981.5	6/46	1,677 1.7	1852 /	1.734 1.7	1872 19	1.697 1.703 1.747 1.769 1.850 1.823 1.848 1.864 1.917	1712-1765		5117
TATUS	7A 8A	0491 1047	1703 166	1.714 1.673	1291 2021	103 1.669	1888 1850 1857 1.927 1.887 2.04 2.044 2.015 2.46 2.091	1984 1661	1712 167	129/ 49/-1	1.918/561	1.5.3 1.57	19.8 1864	17 1660		(11)	1676 1650 1658 1.72 1.600 1815 1.74	1.856,1857 1.860 1.944 1.510 2.155 2.105 2.142.265	312 1781	11864	1.341 1.834 1.808 1.385 1.330 2.206 2.29 2.068 2.677	1.343 1.898 1.923 1.988 1.935 2.305 2176 2250 247 2.528 2433	1.927 1.8841.8981.9841.930 2.731 2175 2242 2075 2112 2185	1.349 1,860 1877/366 1.3152197 2110	578 1.666	1887 1852 1852 1.908 1.900 2.229 2.127 2.18 2.38 2.58 2.59	1.748 1.721 1.734 1.767 1.718 1.822 1.800 1.816 1.833 (.765-1.891	1860	1.731 1.697	1743 1703	1.74 1.135	1751
⊘	VOLTAGE		11 211 1561	1.717	9117	J E1/1 ETT1			_	1.786 1.712 1.	$\overline{}$	152	1958	1709		(65)			1.850 1.	1.952 //5	2005 1.5				1.70/	1835	1767			(3)		٤]
MODULE		. ~	177.1 817.1	177 1777	בונון ווגן	1,710 L773	2.97 2.230 1.997 1940 2045 1.915	301.1 2171 221.1 831.1 838.1 508.1	1.27.1 887.1 027.1 7.77.1 838.1 178.1	22/1 112	7.375 2.41 2.029 1.354 2.155 1.557	13 2 165	70 7.200	2811 4111 2251 JIN 1881		1715 175	1337 1802 1.264 1.338 180 1603	5.250 2,173 2025 2006 2,183 1.543	255/2230 1.94 1.314 2.073 1.850	2381 2353 2078 2002 2305 1.952	2646 2537 2163 2.059 2235 2005	2.481 2.425 2.43 2,048 2252 2.00	5,500	2.3472.2772047 1.976 2.204	24 1.787	2347 2057 1974 2209	1768 2.021	2,277-231 2034 1.961 2.188 1.922	1749 . 162 1.35	1.769 (.989	1.500 1.512 2021 2081	1.190 2.044
Š	CELL 3A 4A	1.764	1.764	112/1992/1843/1987	1761	1757	1,997	1.763 [1774	1.862 (.863 1765 1711	7 620.7	2.43) 2.433 2044 1973	2.474 2.038 1500	1765 1	_	_	1.7641.7	2025	1.94 1.5	20792	216320	2.143 2,	2/0120	2047 1.9	1.876 2.770 1.724	205/19	1826	2034 19	1804	1.50x 1.50x 1.7	15251	
	1A 2A	1882 1821	1855/233	\$3/S9	6.8 1868 1837	1.875 1.846 1757	A7 2.230	898 20	871 1.868	387 (863	375 2.418	15 2.433	2.574 2.47Y	111 11	-	1515 1.900 1751	13/ 180	250 2/73	5/220	38 2353	46 2537	185 2925	1957 FB	143 227		2.481 2.347	1.876 1.853	1827 29	1952 380	1947 [1898	138 Se	648 1883
	1211		6.6 1/	6.6.7	6.89	8.9	362	9	10	<u></u>	0.05	7.0	7	. 9		6.0	63	0"/	12.9 2.	, , ,	7	1200	HO HO 250 254 2461 2,012001 2,2491.384	13.6 2.	7567 L.5	2		12522	133	5.		34
		4 6.7	2		16.7		13.4	6	7 6.7	200	7. 6. 8	A 13.8	1140		3	-	1.6.3		7 137	3.4	14.	÷					7.7	126	3	2		2.
	MOD VOLTS	14.C7 16.14	1403/605	14,000	14.02 16.01	14.04 16.05	18.06 18.91	1906/6.18	14.13 16.17	Pd.08 16.19	11.15	40 15R	1891 1997	1411 1631	-	1392/14	141 611	PA.12 16.19	161 10	16.54 M.S.	17.41 20.24	17.17 19.94	17.13 19.86	164 18.33	MAG K OF	16.66 19.46	16.40 A.30	16.36 1905	19.41 16.52	14.62 1660	1467 16.34	प्रका
	MODE N	3	3	3	707		¥ :	207	_	$\neg \tau$	- 1	- 1	1	40 14	H;	3	7	3	17	4. 16	77		_	$\overline{}$		-	_ [20 14		-	9
4	LOW	_		46:3712:49				16.27	16.91				2.5						49.8 20 S4 11, 16.01 19.13	50.61 20.88 Hi	3.30 50:97 21:05 14:	4 26 51. 4 21.20 Hi	530 S1.87 21.09 H.		25.76.27.59	5357 2350 1	1			7 36 1	21.42	1111
ND		4:30 08:37 1C:40	5:30 45:37 11:49	5.3	453	5 45.57	10:30 45.59 16.27	1:30 45.70 16.27	2:30 45.77 16.91	4:30 45.99 17.69	₹	46.33	8:30 1705	2.30 47.15 19.61		45.05 19.77	11:30 HEEC 2017	2.30 49.24 ZUM	_		50.97	27.46	57.83	3	52.76	5357		55.824.42		5.30KLYY		1.305/
E5T	E TIME	3 4.36	36 530	376.30	38 7:40	40-49-45-87-19.55	4 70:30	44 1:30		30	6.35 4.44 17.41			9.30	8.0	10.	1:30		$\overline{}$				5.30	6.30	230	\$	11.30	1.30	3.30	2	6.30	1.30
<u> </u>	DATE	12-3				1	4	4	2	4	7	32	γ̈́			_	-		9602			2.4						1				
														,	C-	23		50/M1+														

JE	NZHA	*										3.04M																				
PAGE 3	L'N	POL	540 SW	200/250	400/1/20	34/40	410	398	2.30	2.10	345	0.36	2360	470						-												
A		۵	25%	38	15.46	- 1	3001	2720	1,996	CS/2	2238	1387	2335	2745			+			1	1		-	+	-	+	+			1		+
MODULE STATIAS		2 B	2.472	1,500 1930		2.50	2.107	2.528	1934	2/08	2119	2337 2282 2331	2164 233	2150																	_	
		36	2.374	1.500	1.332 1.855 1.304	2.360	2.0%	238/	1877	1882	2,13/	2237	1.896	2064																		
		48	2/0	0837	1.832	1.11	2039	2210	6481	1843	2065	2731	1981	2019																		
		58	20%	6151	1.840 1.818	2,248 2/02 2.172 7.360 2.55 2.660	2000 1.83,1940 (2187 1.916 1873 1.832 1.837 1.917 1.879 2053 2030 2039 2.055 2.107 2.181	1.831.1837 1.937 \$1912 2.74 2.14 2210 2381 2528 2720	22 1.9821.8681.7581.9751.571.91.6001.6001.6001.0001.0001.8001.8001.800	1.957 1.863 1.765 1.731 1.806 1.726 1.699 1.661 1.682 1.754 1.721 1.841 1.844 1.843 1.852 2,108 2.153	ZNT ZNS 1.946 1.90 TZ.115 1.988 1.848 1.822 1.819 1.509 1.880 7.095 7.052 7.065 21.31 2.179 22 8	2.184 1.983 1.94 1.875 1.950 1.900 1.770 1.784 1.851 1.826 2.058 2.035 2.031	288. 1881 1881 1881 1881 1881 1881 1881	3+12 B31 2 6402 6102 1467 11631 11611 1221 16891 10291 12691 1161 18861 8961																		
		9	2.200	1.743/1843			2053	2.742	1843	1841	2005	20CB	0487	1801																		
		B	1.902		1785 1746	1.951 1908	1.879	1813	1.722	1.72	1.880	7837	1261	1121						_												
		83 B	7947	1.783		1.550	1917	1.937	סככ ו	1,754	685/	1881	1745	1777																		
		98	1061	110	1.739	1.865	1837	1837	1679	168	1879	1821	1,706	897							_											
		8.A	$\overline{}$	1730	1725	43.1 888.1 CHES	1.832	183	1.67	1.66	1,822	1.74	197	29/						_	_				1							
	LI	7.4	5151	1158		1.979	1873	1,88	1.69	1.69	1.846	177	1.687	1.69.							_					1						
	VDLTAGE	49	2266 1989	1779	1113	(24)	1.9/6	2565 2259 1.97 1.921 2163 1.916 1.855	81218	1.726	3881	6087	111/	1717						\perp	_		1	1	_	_						
	ΔV	5 A		1.rsc 2035	1.125 2050	220	218	2/63	1.79	1.80	2115	2/956	1881	1.887	<u></u>				_	_	_		-	1		1	_		_		1	
	CELL	44	2049 2056			2007	31.94	182	81.718	51.73	6/30	181	174					_		\perp	-	_	-	1	1	1		_		_		
	0	3A		1832	1.80	2017	1.8	1.97	21.75	176	1.94	31.9%	1776	1.837/800					_	\downarrow	1	_	1	1	1	_	_		_	_		$\perp \downarrow \downarrow$
		2A	12.21	1.860	1.77	2517 232	200	5225	188	71.86	1 20	86/	1087 3187	2 183					_	4	4	4	-	1	\downarrow	1	4			4	_	\perp
		Ā	3 227	1.308	/, %	1.250	21112	256	367	//95				1.925						\dashv	_	1	-	\downarrow	1	1	_	-	_		_	
	4		_			7.5	1 11.5			-				2.1			_		_	\dashv	-	-	-	+	-	1	-			_	4	_
	15 MDC	4	1001 A		27.4	8 13.0	_			6 7.3			27 4	2.1		_		-	_		-	-	+	+	+	1	4	-	-	-	-	_
	MOD VOLTS	8	17.17	11/4.53	D /6.62	17.58	K38 16.31	16.53 19.91	2,66	14.10 16.46	3181 0951	1808	7 654	14.36 16.34				-	-	-	-	-	+	\downarrow	\dashv	+	1	-	-	-	_	
		۲	1, 16.62	14:11	14.10	16.71			10 /422 16.61				42	_						-	+	_	-	+	+	-	-	-	-	-	-	\dashv
	W MODE		11;	23 60	25/6	7		8 H.		3	20 20		3 60	67 60					_	-		-	-	-	-		-	-		-	-	\dashv
4	HS LOW	TIMER TIMER	70 27.58	07 2799	.4 28	30 21.	38	20 00	49 29		84 29	27 32	63.75 30.33	64/8 3267					-	-	-		+	-	+	+	+		-	-	-	-H
DN L	<u> </u>	+	830M S.10	5807	10:30 58.64 28.25	11:30 5730 21:56	12.30 59.30 28.73	1.30 6076 2802	11.82 6770 08.2	o,	4.30 62.81 29.76	5.30 63.27 3205	63.	73° 64				-	-	\dashv	-	-	-	+	+	+	+		-	-		
TEST	DATE TIME		12-10 83	4.6	9	11	12	17.3	Ž.	3:50	4	Š	06.9	N.					-	-	-	-	+	+	+	-	+		\dashv	-	-	
-	2		1	[$_{\perp}$				\perp			1					